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27.6 Conclusion

During the last several years, significant stagnation has been observed in the development and
application of industrial robots. The reason for this lies in the fact that in the last two or three
decades a majority of simpler jobs in different industries and in workplaces presenting hostile
environments to humans have been robotized.

We are now in an era of specialized, unconventional robots dedicated to complex tasks to be
performed under specific and hazardous conditions. These robots are endowed with the elements
of artificial intelligence. The objective is to initiate long-term multidisciplinary research with the
goal of designing function-oriented devices equipped with proper onboard intelligence capable of
autonomously performing common human work.

It is expected that the new generation of robots will yield explosive development that will have
an impact comparable to that we witnessed with the appearance of personal computers. The present
service robots will be replaced by personal robots. From the scientific point of view they will
represent the continuation of the earlier research on anthropomorphic robots (now called humanoid
robots) that are endowed with elements of artificial intelligence. The future service robots will work
in the environment of humans, which imposes the requirement for human-like behavior in the area
of motion, intelligence, and communication. Obviously, modeling, control, and design of such
robots must be based on a wide range of disciplines such as system theory, artificial intelligence,
material science, mechanics, and even biomechanics, physiology, and neuroscience.
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27.1 Zero-Moment Point — Proper Interpretation

 

27.1.1 Introduction

 

Biped locomotion has been at the focus of researchers for decades. Theoretical studies have been
followed by simulations and realizations — from the simplest cases of planar mechanisms to
humanoid robots, which are the most complex locomotion mechanisms constructed to date. Irre-
spective of their structures and complexities, the basic characteristics of all locomotion systems
are: (1) the presence of unpowered degrees of freedom (DOFs) formed by the contact of the foot
with the ground surface, (2) gait repeatability (symmetry), and (3) regular interchangeability of the
number of legs that are simultaneously in contact with the ground. Two different situations arise
in sequence during walking: the statically stable double-support phase in which the mechanism is
supported on both feet simultaneously, and the statically unstable single-support phase when only
one foot of the mechanism is in contact with the ground and the other is transferred from the back
to front position. Thus, the locomotion mechanism changes its structure from an open to a closed
kinematic chain during a single walking cycle. All these circumstances have to be taken into account
in gait synthesis.

All of the biped mechanism joints are powered and directly controllable except for the joint
formed by contact of the foot and the ground. This contact is essential for walking because this is
the only point at which the mechanism interacts with the environment, and the mechanism’s position
relative to the environment depends on the regularity of its behavior. It is often called unpowered
DOF because in case of an improper motion, the mechanism as a whole would start to rotate about
the foot edge, and a new unpowered joint would appear. If such improper foot behavior occurred,
the position of the entire mechanism relative to the environment would be jeopardized and the
mechanism would overturn.

Foot behavior cannot be controlled directly; it is controlled in an indirect way by ensuring
appropriate dynamics of the mechanism above the foot. Thus, the overall indicator of mechanism
behavior is the ground reaction force: its intensity, direction, and particularly its acting point, termed
the 

 

zero-moment point

 

 (ZMP).

 

1-5

 

 Recognition of the significance and role of ZMP in the biped
artificial walk was a turning point in gait planning and control. The methods for gait synthesis
(semi-inverse method) were proposed in the two seminal works,

 

1-2

 

 and for a long time they remained
the only mechanisms for biped gait synthesis. Recently, another method has been reported,

 

6

 

 which,
among other criteria, takes into account the overall gait indicator: the ZMP position.

The concept of ZMP has recently found practical applications in humanoid, biped, and multi-
legged robots. Numerous studies addressed the mathematical formalisms for computing the ZMP.
Several algorithms for biped control and monitoring based on the ZMP concept have been proposed
(e.g., Inoue et al.,

 

7

 

 Huang et al.,

 

8

 

 Yagi and Lumelsky.

 

9

 

 Fujimoto et al.,

 

10

 

 and Fukuda et al.

 

11

 

). As
demonstrated recently,

 

12

 

 the ZMP is also convenient for the analysis and control of human gait in
rehabilitation robotics. The ZMP concept provides a useful dynamic criterion for the analysis and
synthesis of human/humanoid robot locomotion. The ZMP indicates gait balance during the entire
gait cycle and provides a quantitative measure for the unbalanced moment about the support foot
and for the robustness (balancing margin) of the dynamic gait equilibrium.

 

27.1.2 The ZMP Notion

 

First, we would like to clarify the notion and, accordingly, the name of ZMP. Let us consider the single-
support phase as shown in Figure 27.1, i.e., when only one foot is in contact with the ground (stance
leg) while the other is in the swing phase, passing from the back to the front position. To maintain the
mechanism’s dynamic equilibrium, the ground reaction force  should act at the appropriate point on
the foot sole to balance all the forces acting on the mechanism during motion (inertial, gravitational,
Coriolis, and centrifugal forces, and the corresponding moments), as shown in Figure 27.1.

r
R
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If we place the coordinate system at the point where  is acting (let us assume that this point
is under the foot), it is clear from the equilibrium conditions that the moments acting about the
horizontal axes 

 

x

 

 and 

 

y

 

 will always be equal to zero, i.e., 

 

M

 

x 

 

= 0 and 

 

M

 

y 

 

= 0. The only moment
component that may exist is 

 

M

 

z

 

. It is realistic to assume that the friction coefficient between the
ground and the foot is high enough and that 

 

M

 

z

 

 is balanced by friction forces. Thus, 

 

M

 

z

 

 will not
cause foot motion and change in foot dynamics, and will not influence behavior of the mechanism
above the foot. Since both moments relevant to the gait continuation (

 

M

 

x

 

 and 

 

M

 

y

 

) equal zero, a
natural name for the ground reaction force acting at this point will be the zero moment point. Any
change in the locomotion dynamics will change the vector of the ground reaction force, causing
simultaneous changes in its direction, intensity, and acting point (ZMP). The following basic ZMP
definition

 

1,2,13

 

 reflects the above consideration:

 

Definition 1 (ZMP)

 

:    The pressure under the supporting foot can be replaced by the appropriate
reaction force acting at a certain point of the mechanism’s foot. Since the sum of all moments of
active forces with respect to this point is equal to zero, it is termed the zero-moment point (ZMP).

To define ZMP in a mathematical form, let us consider the dynamic model of the human,
humanoid, or biped robot (the following analysis can be applied to all these systems). The
human/humanoid dynamics will be modeled using the multibody system model consisting of N
chains involving the body parts (head, arms, legs, trunk, and pelvis). Each chain consists of n

 

i

 

-links
(i = 1,…,N) interconnected with single DOF joints (the multiple DOF joints are decomposed into

 

FIGURE 27.1

 

Single-support phase.

 
r
R
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the single ones). For the sake of simplicity, let us consider the rigid body model that is a relatively
good approximation of the humanoid dynamics, though it represents a very idealized model of the
human gait. The multi-DOF structures of the human locomotion mechanism, joint flexibility, and
structural and behavioral complexity of the foot support the realization of dynamic gait patterns
that are difficult to achieve with the existing humanoid systems.

During locomotion the following active motion forces act on the body links:

= Gravitation force of the 

 

i-

 

th link acting at the mass center 

 

C

 

i

 

= Inertial force of the 

 

i-

 

th link acting at the mass center 

 

C

 

i

 

= Moment of the inertial force of the 

 

i-

 

th link for 

 

C

 

i

 

= Resultant ground reaction force

All active motion forces (gravitational and inertial forces and moments) can be replaced by main
resultant gravitation and inertial force and, in most cases, resultant inertial moment reduced at body
center of mass (CoM). The ground reaction force and moment can be decomposed into vertical
and horizontal components with respect to the reference frame. The horizontal reaction force
represents the friction force essential for preserving the contact between the foot and the ground.
The vertical reaction moment represents the moment of the friction reaction forces reduced at an
arbitrary point 

 

P

 

. We will assume a stable foot–floor contact without sliding. This means that the
static friction forces compensate for the corresponding dynamic body reaction forces. Accordingly,
the vertical reaction force and horizontal reaction moment components represent the dynamic
reaction forces that are not compensated by the friction. The decomposition will be presented in
the following form:

 (27.1)

where the indices 

 

h

 

 and 

 

v

 

 denote the horizontal and vertical components respectively, while 

 

f

 

indicates the friction reaction force and moment components. Let us select the ZMP as the reduction
point of interest, i.e., 

 

P = ZMP.

 

 Then the following equations express the dynamic equilibrium
during the motion in the reference coordinate system:

 (27.2)

where 

 

O

 

 denotes the origin of the reference frame (Figure 27.1). Then, based on the ZMP definition
we have:

.  (27.3)

Substituting the relation:

 (27.4)

into the second equation of Equation (27.2) and taking into account the first equation of (27.2) gives:
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.  (27.5)

Considering only the dynamic moment equilibrium in the horizontal ground plane (i.e., the
moments that are not compensated by friction), we can write:

.  (27.6)

Substituting Equation (27.4) in Equation (27.6) yields:

 (27.7)

Equations (27.6) and (27.7) represent the mathematical interpretation of ZMP and provide the
formalism for computing the ZMP coordinates in the horizontal ground plane.

The one-step cycle consists of the single- and double-support phases, taking place in sequence.
A basic difference between these elemental motion phases is that during the motion in the single-
support phase, the position of the free foot is not fixed relative to the ground. In the double-support
phase, the positions of both feet are fixed. From the ZMP point of view, the situation is identical.
In both cases, ZMP should remain within the support polygon in order to maintain balance. During
the gait (let us call it 

 

balanced gait

 

 to distinguish it from the situation when equilibrium of the
system is jeopardized and the mechanism collapses by rotating about the support polygon edge),
the ground reaction force acting point can move only within the support polygon. The gait is
balanced when and only when the ZMP trajectory remains within the support area. In this case,
the system dynamics is perfectly balanced by the ground reaction force and overturning will not
occur. In the single-support phase, the support polygon is identical to the foot surface. In the double-
support phase, however, the size of the support polygon is defined by the size of the foot surface
and by the distance between them (the convex hulls of the two supporting feet)

 

.

 

This ZMP concept is primarily related to the gait dynamics; however it can also be applied to
consider static equilibrium when the robot maintains a certain posture. The only difference is in
the forces inducing the ground reaction force vector. In the static case, there is only the mechanism
weight, while the gait also involves dynamic forces. Accordingly, when equilibrium of a static
posture (the mechanism is frozen in a certain posture and no gait is performed) is considered, the
vertical projection of total active force acting at the mass center must be within the support polygon.
This is a well-known condition for static equilibrium.

 

27.1.3 The Difference between ZMP and the Center of Pressure (CoP)

 

One can see from the above analysis that ZMP is apparently equivalent to the center of pressure
(CoP), representing the application point of the ground reaction forces (GRFs). The CoP can be
defined as:

 

Definition 2 (CoP)

 

:    CoP represents the point on the support foot polygon at which the resultant
of distributed foot ground reaction forces acts.

The CoP is commonly used in human gait analysis based on force platform or pressure mat
measurements. In human locomotion, the CoP changes during the stance phase, generally moving from
the heel toward a point between the first and second metatarsal heads. It is relatively simple to
demonstrate that in the considered single-support phase and for balanced dynamic gait equilibrium
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(Figure 27.1), the ZMP coincides with the CoP. Let us again consider the equilibrium
(Equation (27.2)) assuming that CoP is the reduction point P = CoP and ZMP and CoP do not
coincide. According to the adopted notation, the force and moment reduced at CoP are denoted as

 and  respectively, while the reaction force and moment are  and . Consider the
equilibrium of the foot reaction forces, supposing that ZMP does not coincide with CoP. For this
case we can write:

 (27.8)

However, on the basis of CoP definition for the balanced gait, we have:

 (27.9)

which can only be satisfied if:

 (27.10)

and it follows that .
Let us discuss the justification of introducing a new term (ZMP) for a notion that has already

been known in technical practice (CoP). While CoP is a general term encountered in many technical
branches (e.g., fluid dynamics), ZMP expresses the essence of this point that is used exclusively
for gait synthesis and control in the field of biped locomotion. It reflects much more clearly the
nature of locomotion. For example, in the biped design we can compute ZMP on the assumption
that the support polygon is large enough to encompass the calculated acting point of the ground
reaction force. Then we can determine the form and dimension of the foot-supporting area encom-
passing all ZMP points or, if needed, we can change the biped dynamic parameters or synthesize
the nominal gait and control the biped to constantly keep ZMP within the support polygon.

Furthermore, the ZMP has a more specific meaning than CoP in evaluating the dynamics of gait
equilibrium. To show the difference between ZMP and CoP, let us consider the dynamically
unbalanced single-support situation (the mechanism as a whole rotates about the foot edge and
overturns) illustrated in Figure 27.2, which is characterized by a moment about CoP that could not
be balanced by the sole reaction forces. The reaction moment that can be generated between the
foot and the ground is limited due to the unilateral contact between each sole and the floor. The
intensity of balancing moments depends on the foot dimension. Obviously, it is easier for a person
with larger sole to balance the gait. The dynamic motion moments in specific cases may exceed
the limit, causing the foot to leave the ground. In spite of the existence of a nonzero supporting
area (soft human/humanoid foot), reaction forces cannot balance the system in such a case. The
way in which this situation in human/humanoid gait can occur will be considered later. As is clear
from Figure 27.2, the CoP and the ZMP do not coincide in this case. Using an analogy to fluid
dynamics, we could determine CoP as the center of pressure distribution (e.g., obtained by a pressure
mate). It should be mentioned that in regular human gait, in a dynamic transition phase (e.g., heel
strike and toe off), it is difficult to estimate CoP on the basis of force plate measurements.

However, ZMP, even in the case illustrated in Figure 27.2, can be uniquely determined on the
basis of its definition. Assuming that both reaction force and unbalanced moment are known, we
can mathematically replace the force–moment pair with a pure force displaced from the CoP. In
this situation, however, the ZMP and the assigned reaction force have a pure mathematical/mechan-
ical meaning (obviously, the ZMP does not coincide with the CoP) and the ZMP does not represent
a physical point. However, the ZMP location outside the support area (determined by the vector 
in Figure 27.2) provides very useful information for gait balancing. The fact that ZMP is instanta-
neously on the edge or has left the support polygon indicates the occurrence of an unbalanced
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moment that cannot be compensated for by foot reaction forces. The distance of ZMP from the
foot edge provides the measure for the unbalanced moment that tends to rotate the human/humanoid
around the supporting foot and, possibly, to cause a fall. When the system encounters such a
hazardous situation, it is still possible by means of a proper dynamic corrective action of the biped
control system to bring ZMP into the area where equilibrium is preserved. To avoid this, a fast
rebalancing by muscles or actuator actions (change of dynamic forces acting on the body) is needed.
Several approaches to realization of this action have been discussed.

 

13

 

On the basis of the above discussion, it is obvious that generally the ZMP does not coincide
with the CoP

.  (27.11)

The CoP may never leave the support polygon. However, the ZMP, even in the single-support
gait phase, can leave the polygon of the supporting foot when the gait is not dynamically balanced
by foot reaction forces, e.g., in the case of a nonregular gait (even in the case of a degenerative
gait). Hence, ZMP provides a more convenient dynamic criterion for gait analysis and synthesis.

The ZMP outside the support polygon indicates an unbalanced (irregular) gait and does not
represent a physical point related to the sole mechanism. It can be referred to as imaginary ZMP
(IZMP). Three characteristic cases for the nonrigid foot in contact with the ground floor, sketched
in Figure 27.3, can be distinguished. In the so-called regular (balanced and repetitive) gait, the
ZMP coincides with CoP (Figure 27.3a). If a disturbance brings the acting point of the ground
reaction force to the foot edge, the perturbation moment will cause rotation of the complete biped
locomotion system about the edge point (or a very narrow surface, under the assumption that the
sole of the shoe is not fully rigid) and overturning (Figure 27.4). In that case we speak of IZMP,
whose imaginary position depends on the intensity of the perturbation moment (Figure 27.3b).
However, it is possible to realize the biped motion, for example, on the toe tips (Figure 27.3c) with
special shoes having pinpoint areas (balletic locomotion), while keeping the ZMP position within
the pinpoint area. Although it is not a regular (conventional, ordinary) gait, the ZMP also coincides
with CoP in that case.

 

FIGURE 27.2

 

Action/reaction forces at CoP and ZMP (irregular case).

ZMP CoP≠
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Because of foot elasticity and the complex form of the supporting area, the ZMP displacements
outside the safe zone (Figure 27.2) in human locomotion are much more complex and difficult to
model. Even in a regular human gait, ZMP leaves the support polygon dynamically during the
transition from the single- to double-support phase, providing a smooth dynamic locomotion. The
implementation of such gait patterns in humanoids with simple rigid feet is not practically possible.

In the double-support phase, and even more during transition from the single to the double phase,
the ZMP leaves the foot-supporting polygon. Stable dynamic equilibrium in the double-support
phase is characterized by the ZMP location within the enveloping polygon between the two feet.

 

13

 

FIGURE 27.3

 

The possible relative positions of ZMP and CoP: (a) dynamically balanced gait, (b) unbalanced
gait (the system rotates about the foot-edge and overturns), and (c) intentional foot-edge equilibrium (balletic
locomotion).

 

FIGURE 27.4

 

Imaginary ZMP in unbalanced human gait.
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The extent of ZMP dislocation from the enveloping polygon also provides a practical measure for
the unbalanced moments. In previous works

 

13

 

 our attention has mainly been focused on the problems
of biped design and nominal motion synthesis, as well as stability analysis and biped dynamic
control that will prevent the ZMP excursions close to the edges of the supporting polygon in spite
of various disturbances and model uncertainties. Due to limitations of the sensory and control
systems, the occurrence of a new unpowered joint (ZMP at the edges of the support polygon) has
been considered as critical and undesirable in the past.

Hence, the situation when ZMP can arbitrarily be located in the foot plane was practical in
designing the biped foot dimensions and nominal motion synthesis. When the ZMP approaches
critical areas or even abandons the support polygon (Figure 27.3), balancing is focused primarily
on compensating for the unbalanced dynamic moment using the posture control. One way of
overcoming such critical situation is to switch to a new nominal trajectory that is closest to the
momentary system state.

 

5

 

 These nominals are synthesized to bring the system back to the stationary
state and enable gait continuation. To do this, it is not necessary to have information about exact
intensity of the disturbance moment. For such an approach (which is very close to the human
behavior in similar situations), it suffices to detect the occurrence of such hazardous situations.
Thus, there is no need for on-line computation of the IZMP location for the purpose of biped
control. For these reasons the IZMP location has not gained more practical importance. However,
the recent development of powerful control and sensory systems and the fast expansion of humanoid
robots gives a new significance to the IZMP, particularly in rehabilitation robotics. The consideration
of ZMP locations, including also the areas outside the supporting foot sole, becomes essential for
rehabilitation devices.

 

12

 

27.2 Modeling of Biped Dynamics and Gait Synthesis

 

The synthesis of the motion of humanoid robots requires realization of a human-like gait. There are
several possible approaches, depending on the type of locomotion activity involved. It should be kept
in mind that the skeletal activity of human beings is extremely complex and involves many automated
motions. Hence, the synthesis of the artificial locomotion–manipulation motion has complexities related
to the required degree of mimicking of the corresponding human skeletal activity.

If, however, we concentrate on the synthesis of a regular (repeatable) gait, then it is natural to
copy the trajectories of the natural gait and impose them onto the artificial (humanoid) system. Of
course, the transfer of trajectories (in this case of the lower limbs) from a natural to an artificial
system can be realized with a higher or lower degree of similarity to the human gait. Hence, the
anthropomorphism of artificial gait represents a serious problem. To explain the practical approach
to solving this problem, let us assume we have adopted one of the possible gait patterns. By
combining the adopted (prescribed) trajectories of the lower limb joints (method of prescribed
synergy

 

1,2,5,13

 

) and the position (trajectory) of ZMP using the semi-inverse method,

 

2,5,13

 

 it is possible
to determine the compensation motion of the humanoid robot from the moments about the corre-
sponding axes for the desired position of the ZMP (or ZMP trajectory). The equilibrium conditions
can be written also for the arm joints. In fact, the unpowered arm joints represent additional points
where moments are known (zero). These supplementary moment equations about the unpowered
arm axes yield the possibility of including passive arms in the synthesis of dynamically balanced
humanoid gait.

 

27.2.1 Single-Support Phase

 

Let us suppose the system is in single-support phase and the contact with the ground is realized
by the full foot (Figure 27.5). It is possible to replace all vertical elementary reaction forces by the
resultant force R

 

V

 

. Only regular gait will be considered, and the ZMP position has to remain within
the support area (polygon).
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The basic idea of artificial synergy synthesis is that the law of the change of total reaction force
under foot is known in advance or prescribed. The prescribed segments of the dynamic character-
istics which restrict the system in a dynamic sense are called dynamic connections. If a certain
point represents the ZMP and the ground reaction forces  is reduced to it, then the moment 
should be equal to zero. The vector  always has a horizontal direction and, hence, two dynamic
conditions have to be satisfied: the projection of the moment on the two mutually orthogonal axes
X and Y in the horizontal plane should be equal to zero.

 (27.12)

As far as friction forces are concerned, it is a realistic assumption that the friction coefficient is
sufficiently large to prevent slippage of the foot over the ground surface. Thus, it can be stated that
their moment with respect to the vertical axis V is equal to zero:

.  (27.13)

The axis V can be chosen to be in any place, but if it passes through the ZMP, then the axes X,
Y, and V constitute an orthogonal coordinate frame, and V will be denoted by Z. The external
forces acting on the locomotion system are the gravity, friction, and ground reaction forces. Let us
reduce the inertial forces and moments of inertial forces of all the links to the ZMP and denote
them by  and , respectively. The system equilibrium conditions can be derived using D’Ale-
mbert’s principle and conditions (27.12) can be rewritten as:

, (27.14)

where  is the total moment of gravity forces with respect to ZMP, while  and  are unit
vectors of the 

 

x

 

 and 

 

y

 

 axes of the absolute coordinate frame. The third equation of dynamic
connections, Equation (27.13), becomes:

 (27.15)

where  is a vector from ZMP to the piercing point of the axis V through the ground surface; 
is a unit vector of the axis V.

Let us adopt the relative angles between two links to be the generalized coordinates and denote
them by . Suppose the mechanism foot rests completely on the ground, so that the angle is zero,

. The inertial force  and the moment , in general, can be represented in the linear forms
of the generalized accelerations and quadratic forms of generalized velocities:

 

FIGURE 27.5

 

Longitudinal distribution of pressure on the foot and ZMP position.
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, k = 1, 2, 3

, k = 1, 2, 3  (27.16)

where the coefficients  (k = 1, 2, 3; and = 1, …, n; j = 1, … n) are the functions of the
generalized coordinates, and  and (k = 1, 2, 3) denote projections of the vectors  and 
onto the coordinate axes. By introducing these expressions into Equations (27.14) and (27.15) one
obtains:

 (27.17)

where the superscripts 

 

x

 

 and 

 

y

 

 denote the components in direction of the corresponding axis.
If the biped locomotion system has only three DOFs, the trajectories for all angles  can be

computed from Equation (27.17). If the system has more than three DOFs (and this is actually the
case), the trajectories for the rest (n-3) coordinates should be prescribed in such a way to ensure
the desired legs trajectories (for example, measured from the human walk). The trajectories for this
part of the system are prescribed, while the dynamics of the rest of the system (i.e., the trunk and
arms) are determined in a such a way to ensure the dynamic balance of the overall mechanism.

The set of coordinates can be divided in two subsets: one containing all the coordinates whose
motion is prescribed, denoted as , and the other comprising all the coordinates whose motion
is to be defined using the semi-inverse method,

 

1,13

 

 denoted as . Accordingly, the condition (27.17)
becomes:

, k = 1, 2, 3  (27.18)

where  and  (k = 1, 2, 3) are the vector coefficients dependent on  and , whereas the
vector  (k = 1, 2, 3) is a function of , , , and . Since the gait is symmetric, the
repeatability conditions can be written in the form:

 

1,13

 

, 

where the sign depends on the physical nature of the appropriate coordinates and their derivatives;
 is the duration of one half-step. As the motion of the prescribed part of the mechanism has

been already defined (repeatability conditions are implicitly satisfied), the repeatability conditions:

, (27.19)
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for the rest of the mechanism are to be added to the original set of equations describing the
mechanism motion.

The system of Equation (27.18), together with the conditions (27.19), enables one to obtain the
necessary trajectories of the coordinates , i.e., to carry out compensation synergy synthesis. After
the synergy synthesis is completed, the driving torques that force the system to follow the nominal
trajectories have to be computed.

 

27.2.2 Double-Support Phase

 

In the double-support phase, both mechanism feet are simultaneously in contact with the ground.
The kinematic chain playing the role of the legs is closed, i.e., the unknown reaction forces to be
determined act on both ends.

The procedure for the synergy synthesis is in the most part analogous to that for the single-
support phase. Let the position of the axis V be selected within the dashed area in Figure 27.6.
Then, by writing the equilibrium equations with respect to the three orthogonal axes passing through
ZMP and setting the sum of all the moments of external forces to zero, the compensating movements
for the corresponding part of the body can be computed.

The next problem is how to choose the position of the axis V with respect to the ZMP. The
information on ZMP and axis V is insufficient for computation of the driving torques. For this
reason, it is necessary to provide some additional relations concerning the ground reaction force.
The total reaction force under one foot can be expressed as a sum of three reaction forces and
moment components in the direction of coordinate axes. The components  and  can be equal
to zero since the vertical forces on the diagram are of the same sign. The third component 
should also be equal to zero, according to the following consideration. Generally speaking, friction
forces can produce moments, but in synergy synthesis, the moment  should also be equal to
zero. Consequently, if the moments of friction forces are generated, they should be of the opposite
sign under each foot. However, these moments do not affect the system motion but only load the
leg drives and joints additionally. Because of that, it is reasonable to synthesize the gait in such a
way to reduce each of these moments to zero. Thus it can be assumed that total moments of reaction
forces under each foot are equal to zero:

 (27.20)

where the subscripts 

 

a

 

 and 

 

b

 

 denote the left and right foot, respectively.
Characteristics of the friction between the foot and the ground can be represented by a friction

cone (Figure 27.7). If the total ground reaction force  is within the cone of the angle , its
horizontal component (i.e., friction force) will be of sufficient intensity to prevent an unwanted
horizontal motion of the supporting foot over the ground surface. This can be expressed as:

 

13

 

FIGURE 27.6
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 (27.21)

where µ is the friction coefficient of the surfaces in contact. Thus, it is reasonable to distribute the
horizontal components of ground reaction forces per foot proportionally to the normal pressure.
The vertical components are inversely proportional to the distances between the ZMP and the
corresponding foot, so:

 (27.22)

Then, from Equation (27.21) the relation:

 

4,13

 

 (27.23)

holds for the horizontal components, where  and  are the friction forces under the corresponding
foot (Figure 27.8). On the basis of similarity of the triangles 

 

∆

 

 OAD and 

 

∆

 

 OBC, it can be concluded
that the relation (27.23) does not depend on the direction of the force  (i.e., the distances  and

), but only on the distances between the feet,  and . Thus, in order to have friction forces
divided in proportion to the vertical pressures, a necessary and sufficient condition is that the axes

 and  pass through the ZMP. Then, for synergy synthesis in the double-support phase, the
following vector equation holds:

 (27.24)

where  is a radius vector from the ZMP to the gravity center of the 

 

i-

 

th link and  and  are
the inertial force and corresponding moment of the 

 

i-

 

th link reduced to its center of gravity.
When the synthesis of the compensating laws of motion is completed, it is possible to determine

the total horizontal and vertical reactions:

, (27.25)

 

FIGURE 27.7
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where  is the projection of  onto the vertical axis and  and  are projections onto the
axes X and Y, respectively. Here, the axis Z corresponds to the vertical axis (previously denoted
by V) passing through ZMP. The axes X, Y, and Z constitute the absolute orthogonal coordinate
frame. Furthermore, the relations  and  are obvious, and they, together with
the relations:

 (27.26)

extend the possibility of defining the vertical reactions  and , as well as the friction forces
 and . The  and  are the vectors from the ZMP (denoted by 0) to the centers of the

corresponding supporting surfaces A and B, respectively.

 

27.2.3 Biped Dynamics

 

The active spatial mechanism for realization of the artificial anthropomorphic gait belongs to the
class of complex kinematic chains, as shown in Figure 27.9. During walking, the kinematic chain
representing the legs changes its configuration from open to closed,

 

4,13

 

 in the single- and double-
support phases, respectively. Each phase involves a different procedure for forming dynamic
equations, but it is based on the well-known procedure for dynamic modeling of simple open
kinematic chains for robotic manipulators. This procedure enables us to obtain the following
expression:

 

13,14

 

 (27.27)

where P = [P

 

1

 

, …, P

 

n

 

] is a vector of driving moments at the joints,  is the 

 

n

 

 

 

×

 

 

 

n

 

 inertial
matrix,  is the 

 

n

 

 

 

×

 

 1 vector of Coriolis, centrifugal, and gravity forces, q = [q

 

1

 

, …, q

 

n

 

] is
a vector of joint coordinates, and 

 

θ 

 

= [

 

θ

 

 

 

1

 

, …, 

 

θ

 

 

 

n

 

] is a geometric and dynamic parameter vector.
In the case of complex kinematic chains, the system has at least one link (branching link)

belonging to more than two kinematic chains. Calculation of the elements of the matrix H and the
vector h of complex kinematic chains can be carried out by introducing the corresponding number

FIGURE 27.8 Determination of total friction force.
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of series of “+” joints.4,13 A series of “+” joints is formed in such a way that in the case of chain
rupture at a certain “+” joint, the j-th link should remain in the external part (not connected to the
support) of the mechanism. In the course of forming differential equations, the inertial force and
moment of the j-th mechanism link are reduced to its own “+” joint only, and the following procedure
is possible:  and  (total external force and moment) corresponding to the j-th link are
successively reduced to all “+” joints going from the j-th link toward the support. After projecting

 and  onto the axis of the i-th joint, the resulting quantities denoted by  and  can
be calculated in the following way:4,13

, (27.28)

where  is the unit vector of the i-th joint axis, and  is the radius vector from the i-th joint to
the j-th link center of mass, while  and  are the corresponding vector coefficients. Note that
the angular ( ) and linear ( ) accelerations of the i-th link can be expressed as:

, 

where . The  and  are the vector coefficients depending on the generalized
coordinates, while the vector coefficients  and  depend on the generalized coordinates and
velocities. Then, we have:4,13

, , , 

with ,  ,  and   

where   (j = 1, 2, 3) denotes the j-th component of the vector ,  denotes the axes of the
i-th (local) coordinate frame, i.e., the frame attached to the i-th link, and  is the j-th component
of the i-th link inertia tensor defined with respect to the local coordinate frame associated to each
link of the kinematic chain.

The components of matrix H and vector h are obtained by summing the corresponding values
from Equation (27.28) with respect to all series of “+” joints:

FIGURE 27.9 Complex kinematic chain.
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, (27.29)

Figure 27.10 illustrates a branching link that has three kinematic pairs and is a constituent of
two series of “+” joints. The topological structure of the complex chain can be represented by the
matrix MS. Each row of this matrix contains ordinal numbers of the corresponding series of “+”
joints. The element MS(i,j) is the j-th joint in the i-th series of “+” joints. In addition, for each
series of “+” joints, the ordinal number of the initial joint is also defined. The initial joint of the
i-th series of “+” joints is the first joint of the i-th series differing from joints of the (i–1)-th series
of “+” joints. The initial joint of the first series of “+” joints is MS(1,1). For the first link appearing
in the first series of “+” joints, the matrix  should be known.  is a transformation matrix
between the reference frame representing ground floor (or basis) and the first link of the kinematic
chain resting on the ground floor. It is convenient to place the reference frame just at the contact
point. Then, if a fixed support serves as a basis, the matrix  is a unit matrix. If we proceed to
another chain, then the matrix  (  is a transformation matrix of the i-th link coordinate frame
into the reference frame) should be either stored or formed on the basis of the procedure for forming
dynamic equations of motion for open kinematic chains. The transformation matrix of the branching
link serves to calculate the vectors  and . Information is needed on the branching link velocities
( ) and accelerations ( ) and the vector coefficients , and .4,13 All support vectors are
equal to zero. These quantities for the mobile branching link should be stored when the preceding
chain is analyzed.

To consider the biped dynamics in the double-support phase (Figure 27.11), an equivalent open
kinematic chain should be employed. Let us suppose that the terminal link of the equivalent chain
does not coincide with the basic link (Figure 27.12). It is possible to determine the translational
( ) and angular ( ) displacements yielding the coincidence of the two coordinate systems 
and . Since we consider an open chain equivalent to the closed chain in the dynamic analysis,
it is possible to use the same basic procedure as for the open chain.4,13 Thus, the algorithm should
be supplied with an iterative procedure to calculate the position and additional velocities of the
first chain. The procedure is repeated until the closure conditions are satisfied.

27.2.4 Example

The nominal dynamics synthesized for the biped locomotion mechanism shown in Figures 27.13 and
27.14 consists of 14 links and 14 revolute joints of the 5-th class for the single-support phase only.
Links 5 and 10 are branching links. In the course of motion, the hands are fixed on the chest of the

FIGURE 27.10 Branching link of a complex kinematic chain.
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mechanism. This structure can be split into three kinematic chains containing joints 1 through 8, 9
through 12, and 13 and 14, in the first, second, and third chains, respectively. The topological structure
of the complex kinematic chain can be represented by a series of “+” joints in a matrix form:

.

Table 27.1 shows numerical values for the mechanical part of the mechanism. The prescribed
portion of the mechanism motion is adopted for joints 1 through 8, i.e., for the first chain. This
part of the synergy (prescribed synergy) is defined on the basis of the human gait measurements
shown in Figure 27.15. A set of prescribed ZMP trajectories for the single-support gait phase is
given in Figure 27.16 and the compensation has been synthesized for  and  (Figure 27.17) to
ensure dynamic equilibrium of the mechanism during the motion, in both the sagittal and frontal
planes (Figure 27.18).

27.3 Control Synthesis for Biped Gait

Hierarchy is a basic principle on which control of large scale systems is generally based. This holds
true for robots as well. The hierarchical organization of the control system is most often vertical,
so that each control level deals with wider aspects of the overall system behavior than the lower
level.15-18 A higher control level always refers to the lower ones, and it controls system parameters
that vary more slowly. A higher level communicates with a lower level, giving it instructions and
receiving from it relevant information required for decision making. After obtaining the information
from a lower level, each level makes decisions taking into account decisions obtained from higher
levels and forwards them to the lower levels for execution.

27.3.1 Synthesis of Control with Limited Accelerations

Control synthesis is performed in two steps: (a) nominal regimes, and (b) perturbed regimes. For
nominal regimes, the control is computed on the basis of the complete (nonlinear) model with the

FIGURE 27.11 The anthropomorphic mechanism
in double-support position.

FIGURE 27.12 Terminal link of the equivalent
chain.
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permanent requirement of satisfying dynamic equilibrium conditions for the overall mechanism.
This control should enable the system (in the absence of disturbance) to follow the nominal
trajectories. For perturbed regimes, the control should force the state vector to its nominal value,
i.e., to the nominal programmed trajectory. The action should be smooth, with no significant change
in link acceleration, to keep its influence on the unpowered DOFs within an acceptable range.13,19

Let us consider the overall system model defined as:

Assume that the part of the system corresponding to powered DOFs can be rearranged as a set
of subsystems  coupled via the term :

 , 

FIGURE 27.13 Mechanical scheme of the anthro-
pomorphic mechanism with fixed arms. FIGURE 27.14 Notation of  vectors. i jr ,˜

r

S x A x B x N ui: ˙ ˆ ˆ= ( ) + ( ) ( )

a
iS c

i
c
if P⋅( )

a
iS : c

i
c
i

c
i

c
i i

c
i

c
ix A x b N u f P˙ ( )= + + ∀ ∈i I1

8596Ch27Frame  Page 744  Tuesday, November 6, 2001  9:37 PM

© 2002 by CRC Press LLC



where  is the subsystem matrix, whereas  and  are distribution vectors of
the input control signal and force, respectively,  is the subsystem state vector,  and

 are the scalar values of control input and generalized force of the i-th subsystem, ,
,  is the nonlinearity of the amplitude saturation type.

Let the nominal trajectory ,  and the nominal control ,

 be introduced in such a way to satisfy:

 , .  (27.30)

TABLE 27.1 Kinematic and Dynamic Parameters of the Mechanism

Mass Moment of Inertia (kgm2) Distance of the Axes Centers of Joints from the Link Center Joint Unit

Link (kg) JX JY JZ (m)  Axes

1 0.0 0.0 0.0 0.0 = (0,0,0.0001)T; = (0,0,-0.0001)T = (1,0,0)T

2 1.53 0.00006 0.00055 0.00045 = (0,0,0.030)T; = (0,0,-0.070)T = (0,1,0)T

3 3.21 0.00393 0.00393 0.00038 = (0,0,0.210)T; = (0,0,-0.210)T = (0,1,0)T

4 8.41 0.01120 0.01200 0.00300 = (0,0,0.220)T; = (0,0,-0.220)T = (0,1,0)T

5 6.96 0.00700 0.00565 0.00627 = (0,0.135,0.1)T; = (0,-0.135,0.1)T; = (0,0,-0.05)T = (0,1,0)T

6 8.41 0.01120 0.01200 0.00300 = (0,0,–0.220)T; = (0,0,0.220)T; = (0,–1,0)T

7 3.21 0.00393 0.00393 0.00038 = (0,0,–0.210)T; = (0,0,0.210)T = (0,–1,0)T

8 1.53 0.00006 0.00055 0.00045 = (0,0,–0.070)T = (0,–1,0)T

9 0.0 0.0 0.0 0.0 = (0,0,0.0001)T; = (0,0,-0.0001)T = (0,1,0)T

10 30.85 0.15140 0.13700 0.02830 = (0,0,0.34)T; = (0,0.2,-0.06)T; = (0,-0.2,-0.06)T = (1,0,0)T

11 2.07 0.00200 0.00200 0.00022 = (0,0,–0.154)T; = (0,0,0.154)T = (1,0,0)T

12 1.14 0.00250 0.00425 0.00014 = (0,0,–0.132)T = (1,0,0)T

13 2.07 0.00200 0.00200 0.00022 = (0,0,–0.154)T; = (0,0,0.154)T = (–1,0,0)T

14 1.14 0.00250 0.00425 0.00014 = (0,0,-0.132)T = (–1,0,0)T

FIGURE 27.15 Synergy for walking upon level ground.
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Then, the model of subsystem deviation from the nominal is considered in the form:

, .  (27.31)

The purpose of the synthesis of disturbance-compensating control  is to force the system
deviation , (i = 1, 2, …, m) to zero, to maintain the overall system dynamic balance.

We shall synthesize the local controller for the i-th actuator, i.e., for the  subsystem whose
model of state deviation around the nominal trajectory is given by Equation (27.31). We want to
define the controller for this subsystem that will reduce the state deviation  to zero, but in
doing so we want to prevent the appearance of very high accelerations. Therefore, we shall
synthesize a controller that will ensure the acceleration of the corresponding joint  be limited.
We start with the simple problem of the second order linear system with limited accelerations.13,19

Let us consider the classical time-minimum problem. Let the system be described by:

 (27.32)

FIGURE 27.16 Set of ZMP trajectories for the single-support gait phase.

FIGURE 27.17 Compensating DOF in the frontal (a) and sagittal (b) planes.
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with the initial conditions  and , where , , and .
The value  should be computed in such a way to ensure that the system (27.32) returns from

 to the point (0, 0) in a minimal time interval.
Therefore, such a solution of Equation (27.32) should be obtained that the functional 

is at minimum, where  defines an unspecified time interval. Such types of problems  are well
known, and for this particular case ( ), its solution is given by the expression:

.  (27.33)

We shall apply this solution to control one single actuator, i.e., the subsystem  associated with
the i-th joint. Let us suppose the mechanism is powered by DC motors whose models are given in
the form (the state vector  

.  (27.34)

FIGURE 27.18 Compensating movements for the single-support gait upon level ground for T = 1.5, S = 0.6, and
ZMP laws from Figure 27.16.
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From the second equation of (27.34) we can write:

 (27.35)

where  is replaced by the value of the allowed link acceleration  from (27.33). Then, 
in (27.35) is the corresponding rotor current, and its derivative can be computed from the following
expression:

 (27.36)

where  is the control sampling period. Now we can determine the control for Equation (27.34).
Let us assume that we want to limit acceleration of the actuator (joint) within the limits  and

. Starting from the time-minimum control (Equation (27.33)) we can adopt the following
control. From the third equation of Equation (27.34) the compensation control signal for the i-th
actuator is13

 (27.37)

where the constant feedback gains are

, 

, , (27.38)

where , , ,  are the elements of the corresponding matrix and vectors of the
actuator (27.34),  and  are the maximal and minimal values of the accelerations of the
i-th link. The feedback gains synthesized in this way have to ensure compensating movements such
that the accelerations do not exceed a certain predetermined limit. As a consequence, the induced
inertial forces will not cause an undesirable motion of the unpowered DOFs, i.e., the displacement
of ZMP out of a prescribed area. The proposed control law (27.37) consists of two parts: local
control and global control (concerning feedback with respect to  from the rest of the system
upon the i-th subsystem). The term  may be conditionally associated with global control,
although it is based upon local feedback information. The global control ( ) requires
information on the coupling acting upon the i-th subsystem.

27.3.2 Synthesis of Global Control with Respect to ZMP Position

The decentralized control defined by Equation (27.37) applied at the mechanism’s joints is not
sufficient to ensure tracking of internal nominal trajectories with the addition of the appropriate
behavior of the unpowered subsystem. An additional feedback must be introduced at one of the
powered joints to ensure satisfactory motion of the complete mechanism. The task of this feedback
is to reduce the destabilizing effect of the coupling acting upon the unpowered subsystems.

R
i i i i

c

i
c
i ii u a q f P a* *( ˙ ) /∆ ∆ ∆= − −22 23

iq∆˙̇ iu *
R
ii *∆

R
i

R
i

R
ii i i t∆ ∆ ∆ ∆˙ /*= −( )

∆t R∈ 1

min
iΩ

max
iΩ

i
i
L i

i
L i

i
L

R
i

i
G

c
i

i
Gu k q k q k i k P k∆ ∆ ∆ ∆ ∆= + + + +1 2 3 4 5˙ *

i
Lk 1 0= i

L i i ik a a a t d2 22 23 32= − − ⋅ ⋅( )∆ /

i
L i ik a a t d3 23 331= − + ⋅( )∆ / i

G
c

i
k f d4 = − / i

G
ik k d5 5= /

i

i i

i i

i

i

i

i

i

i i

i i

i

i

i

i

i

k

q
q q

q
q

q

q
q q

q
q

q

5

2

2

0 5 0 5
0

0 5 0 5
0

=

<
−

=
( )

∧ <

>
−

=
− ( )

∧ >














max

min

. ˙ ˙ . ˙
˙

. ˙ ˙ . ˙
˙

Ω ∆
∆ ∆

Ω
∆

∆

Ω
∆

Ω ∆
∆ ∆

Ω
∆

∆

Ω
∆

if or

if or

d a b ti
c
i= 23 ∆ jk

ia c
i

b c

i
f

max
iΩ min

iΩ

∆ c
iP *

i
Gk 5

i
G

c
ik P4 ∆ *

8596Ch27Frame  Page 748  Tuesday, November 6, 2001  9:37 PM

© 2002 by CRC Press LLC



Since a dominant role in system stability is played by the unpowered DOFs it is necessary to
reduce the destabilizing coupling effects acting upon them. Because the unpowered subsystem
cannot compensate for its own deviation from the nominal state, one of the powered subsystems
has to be chosen to accomplish it. As coupling of the subsystems  is a function of control input
to the i-th subsystem , it is clear that a feedback from the subsystem  to the inputs  of
the subsystem  should be introduced.

In dealing with bipeds,13,20 where the unpowered DOFs are formed by contact of the feet and
the ground, it is possible to measure the ground reaction force with the aid of force sensors (at
least three) to determine the acting point of total vertical reaction force. For the known motion of
the overall mechanism, the ground reaction force (or force in double-support phase) is defined by
the intensity, direction, and position of the acting point on the foot. If force sensors A, B, and C
are introduced (Figure 27.19) and the system is performing gait, the measured values of vertical
reaction forces , , and  correspond to their nominal values, and the nominal position of
ZMP can be determined. Measurement of the vertical reaction forces , , and  when the
mechanism is performing gait in the presence of disturbances enables the determination of the
actual position of ZMP. If the nominal ZMP position corresponds to point 0, it can be written:

 (27.39)

where , , and  are the deviations of the corresponding measured forces from their
nominal values,  is the total vertical reaction force, and  and  are the displacements of ZMP
from its nominal position. These displacements can be computed from Equation (27.39), provided the
sensor dispositions and vertical reaction forces are known. The actual position of the ZMP is the best
indicator of overall biped behavior, and we can use it to achieve a dynamically balanced motion. Our
aim is to synthesize such control that will ensure a stable gait. The primary task of the feedback with
respect to ZMP position is to prevent its excursion out of the allowable region, i.e., to prevent the
system from falling by rotation about the foot edge. If this is fulfilled, a further requirement imposed
is to ensure that the actual ZMP position is as close as possible to the nominal.

Our further discussion will be limited to biped motion in the sagittal plane, which means that
the ground reaction force position will deviate only in the direction of the x axis by . Figure 27.20
illustrates the case when the vertical ground reaction force  deviates from the nominal position
0 by ; thus, the moment  is a measure of the mechanism’s overall behavior.

In the same way we can consider the mechanism motion in the frontal plane.  is
a measure of the mechanism’s behavior in the direction of the y axis. Let us assume the correction
of the  acting point in one direction is done by the action at only one joint, arbitrarily selected
in advance. A basic assumption introduced for the purpose of simplicity is that the action at the
chosen joint will not cause a change in the motion at any other joint. If we consider only this

FIGURE 27.19 Disposition of the force sensors on the mechanism sole.
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action, the system will behave as if composed of two rigid links connected at the joint k, as presented
in Figure 27.20. In other words, the servo systems are supposed to be sufficiently stiff. In
Figure 27.20, two situations are illustrated: (case a) when the hip of the supporting leg is the joint
compensating for the ZMP displacement, and (case b) when the ankle joint is that joint. In both
cases, this joint is denoted by k, and all links above and below it are considered as a single rigid
body. The upper link is of the total mass m and inertia moment  for the axis of the joint k. Of
course, numerical values are different for both cases.

The distance from the ground surface to k is denoted by L, from k to C (mass center of the upper
link) by , whereas  stands for the additional correctional torque applied to the joint k. In
Figure 27.20, the upper (compensating) link is presented as a single link above the joint k. In both
cases presented, the compensating link includes the other leg (not drawn in the figure), which is
in the swing phase. The calculation of the inertia moment  must include all the links found
further onward with respect to the selected compensating joint. All the joints except the k-th joint
are considered frozen, and, as a consequence, the lower link, representing the sum of all the links below
the k-th joint, is considered a rigid body standing on the ground surface and performing no motion.

The procedure by which the correctional amount of global control is synthesized with respect
to ZMP position is as follows. Assume the mechanism performs the gait such that displacement
of the ground reaction force  in the x direction occurs, so . The quantity 
is to be determined on the basis of the value  and the known mechanism and gait character-
istics. Assume that the additional torque  will cause change in acceleration of the compen-
sating link , while velocities will not change due to the action of , . From the
equation of planar motion of the considered system of two rigid bodies (Figure 27.20), which is
driven by , and under the assumption that the terms  and  in the expression for
normal component of angular acceleration of the upper link are neglected, it follows that:13,19

.  (27.40)

The control input to the actuator of the compensating joint that has to realize  can be
computed from the model of the actuator deviation from the nominal. Thus:

FIGURE 27.20 Compensation of ZMP displacement by (a) hip joint, and (b) ankle joint.
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.  (27.41)

This model differs from Equation (27.34) by the terms  and . From the second
equation of (27.41), the change of the rotor current is:

.  (27.42)

Here the subscript T is used for the acceleration  from Equation (27.41). It denotes the total
change of link acceleration, which consists of two parts. The first part is the regular change of
acceleration due to the control already applied to each powered joint defined by Equation (27.37)
and corresponds to . The second part is a direct consequence of the compensation torque

. Thus:

 (27.43)

where . Then, from the third equation of (27.41) we have:

 (27.44)

where  is the control defined by Equation (27.37), while  stands for 
. Equation (27.44) defines the control input to the k-th actuator that has to produce

. Taking into account that  is derived by introducing certain simplifications, an
additional feedback gain  has to be introduced into Equation (27.44). Thus,
Equation (27.44) becomes:

 (27.45)

The additional feedback and correctional input to the selected powered mechanism’s subsystem
have the purpose only of maintaining the ZMP position. It is quite possible that the feedback
introduced could spoil the tracking of the internal nominal trajectory of the joint k, but the dynamic
stability of the overall system would be preserved, which is the most important goal of a locomotion
system. Which of the joints (ankle, hip, etc.) is most suitable for this purpose cannot be determined
in advance, because the answer depends on the task imposed. In Figure 27.21 a scheme of the
control is given with feedback introduced with respect to the ZMP position.

27.3.3 Example

The scheme of the biped structure used for the gait simulation is presented in Figure 27.22 and its
mechanical parameters are given in Table 27.2. The joint with more than one DOF has been modeled
as a set of corresponding numbers of simple rotational joints connected with light links of zero
length ( ). These are called fictitious links, and in Figure 27.22 are represented by a dashed
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line. For example, simple rotational joints with the unit rotational axes  and  connected to the
fictitious link 3 constitute the ankle joint of the right leg. In a similar way we can represent the
hip and trunk joints. Other joints possess one DOF only.13

Since the mechanism in the single-support phase can rotate as a whole about the foot edges in
the frontal and sagittal planes, these two DOFs are modeled as simple rotational joints with the
axes  and  below the supporting foot. The mechanism rotation about the z axis is supposed to
be prevented by sufficiently large friction between the sole mechanism and the ground surface. The
nominal motion is synthesized using the prescribed synergy method. The compensating movements
are executed by the trunk in the sagittal and frontal planes about  and .

The motion is simulated for one half-step period and for the single-support phase only. Duration
time of the simulated motion was T = 0.75 s. The perturbed motion of the system around the
nominal trajectory was simulated, and the trunk angular displacement from the nominal trajectory
in the sagittal plane of  was adopted as disturbance at the initial moment. Each
gait is simulated using three different values of  (i = 4 for the ankle joint, i = 15 for the trunk)
defined by .  They are ,  ,  and .
Figure 27.23 presents the case when only local feedback gains defined by Equation (27.38) are
employed but without feedback with respect to the overall system equilibrium. The trunk deviation

 converges to the nominal value, but the deviations  (ankle joint) and  (hip joint)
slightly diverge — the absolute values of these deviations are, however, very small.

Figure 27.24 gives the example of ZMP displacement compensated by the ankle joint. Again,
the trunk inclination for 0.2 [rad] was adopted as initial disturbance and . Figure 27.24e
illustrates the ZMP behavior; maximal average deviation is about 1 cm, which can be considered
very successful. Behavior of the other joints, especially of the ankle, is not affected much by keeping
ZMP position strongly under control.

27.4 Dynamic Stability Analysis of Biped Gait

The system is considered a set of subsystems, each of which is associated with one powered joint.
The stability of each subsystem is checked (neglecting the coupling) and then dynamic coupling

FIGURE 27.21 Control scheme with global feedback from the l-th unpowered subsystem to the k-th powered
subsystem.
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between the subsystems is analyzed. The stability of the overall system is tested by taking into
account all dynamic interconnections between the subsystems. However, these tests require that all
subsystems are stable. To analyze stability of the mechanisms including unpowered joints, we
introduced the so-called composite subsystems that consist of one powered and one unpowered
joint. Thus we obtain a subsystem which, if considered decoupled from the rest of the system,
might be stabilized. Further, the interconnections of the composite subsystem with the rest of
subsystems are taken into account, and a test for stability of the overall mechanism is established.

To analyze stability of the locomotion mechanisms, we shall use the aggregation– decomposition
method via Lyapunov vector functions in bounded regions of state space, originally developed for
manipulation robots.13,21,22 Since it is valid for the mechanism with all joints powered, this method
cannot be directly applied to locomotion mechanisms containing unpowered DOFs. Because of
that, we modified the subsystem modeling by incorporating the models of unpowered DOFs into
the composite subsystem models. In this way, the entire mechanism is considered in the stability
analysis.13,22

27.4.1 Modeling of Composite Subsystems

The mathematical model of the complete system S consists of two parts: the model of mechanical
structure  and the model of actuators . These models are:13,17

FIGURE 27.22 Scheme of mechanical biped structure.
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 (27.46)

 (27.47)

The mechanical structure of n DOFs is powered by m actuators. Since the n – m joints are
unpowered, the driving torques  about the axes of these joints are assumed to be zero, i.e., the
vector of driving torques P has the following form . In order to apply
the method for stability analysis, we shall arrange the model in another way. The model of the -th
unpowered joint follows from Equation (27.46):

 (27.48)

TABLE 27.2 Kinematic and Dynamic Parameters of the Mechanism

Mass Moment of Inertia (kgm2) Distance of the Axes Centers of Joints from the Link Center Joint Unit
Link  (kg) JX JY JZ  (m) Axes

1 0.0 0.0 0.0 0.0 = (0,0,0.0001)T; = (0,0,-0.0001)T = (1,0,0)T

2 1.53 0.00006 0.00055 0.00045 = (0,0,0.030)T; = (0,0,-0.070)T = (0,1,0)T

3 0.0 0.0 0.0 0.0 = (0,0,0.0001)T; = (0,0,-0.0001)T = (1,0,0)T

4 3.21 0.00393 0.00393 0.00038 = (0,0,0.210)T; = (0,0,-0.210)T = (0,1,0)T

5 8.41 0.01120 0.01200 0.00300 = (0,0,0.220)T; = (0,0,-0.220)T = (0,1,0)T

6 0.0 0.0 0.0 0.0 = (0,0,0.0001)T; = (0,0,-0.0001)T; = (0,1,0)T

7 0.0 0.0 0.0 0.0 = (0,0,0.0001)T; = (0,0,-0.0001)T = (1,0,0)T

8 6.96 0.00700 0.00565 0.00625 = (0,0.135,0.1)T; = (0,-0.135,0.1)T; = (0,0,-0.05)T = (1,0,0)T

9 0.0 0.0 0.0 0.0 = (0,0,–0.0001)T; = (0,0,0.0001)T = (1,0,0)T

10 0.0 0.0 0.0 0.0 = (0,0,–0.0001)T; = (0,0,0.0001)T; = (0,0,1)T

11 8.41 0.01120 0.01200 0.00300 = (0,0,–0.220)T; = (0,0,0.220)T = (0,-1,0)T

12 3.21 0.00393 0.00393 0.00038 = (0,0,–0.210)T; = (0,0,0.210)T = (0,-1,0)T

13 0.0 0.0 0.0 0.0 = (0,0,–0.0001)T; = (0,0,0.0001)T = (0,-1,0)T

14 1.53 0.00006 0.00055 0.00045 = (0,0,–0.070)T = (1,0,0)T

15 0.0 0.0 0.0 0.0 = (0,0,0.0001)T; = (0,0,-0.0001)T = (0,1,0)T

16 30.85 0.15140 0.13700 0.02830 = (0,0,0.34)T; = (0,0.2,-0.06)T; = (0,-0.2,-0.06)T = (1,0,0)T

17 2.07 0.00200 0.00200 0.00022 = (0,0,–0.154)T; = (0,0,0.154)T = (1,0,0)T

18 1.14 0.00250 0.00425 0.00014 = (0,0,–0.132)T = (1,0,0)T

19 2.07 0.00200 0.00200 0.00022 = (0,0,–0.154)T; = (0,0,0.154)T = (-1,0,0)T

20 1.14 0.00250 0.00425 0.00014 = (0,0,–0.132)T = (-1,0,0)T
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where  is the angle of the -th unpowered joint,  are the members of the matrix H(q),
and  is the member of the vector h. The subscript N denotes the unpowered DOF. However,
instead of this model, let us describe the motion of the system about the axis of the -th unpowered
joint as the motion of an inverted pendulum. The equation of the inverted pendulum motion in a
plane is:

 (27.49)

where M and  are the mass and inertia moment of the pendulum (the pendulum corresponds to

the whole system),  is the distance from the supporting point to the pendulum mass center, and

 is the resultant generalized force acting on the pendulum. If the angle  is small, we can

introduce the approximation . If the term multiplying  is denoted by , and the

term multiplying  by , and  is adopted as state vector, then Equation (27.49)

can be written in the matrix form:

 (27.50)

FIGURE 27.23 Walk simulation with local feedback gains defined by Equation (27.37) and with no feedback with
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and in compact form

Since we want the models (27.50) and (27.48) to coincide, we shall define the force  as:

 (27.51)

In this way we ensure that Equation (27.50) is an exact model of the system motion about the
axis of the unpowered joint. Let us now form the composite subsystem containing one unpowered
DOF (Equation (27.50)) and the k-th powered DOF (Equation (27.47)):

 (27.52)

FIGURE 27.24 Walk simulation with added compensation for ZMP position (compensation is performed by ankle
joint), , .ZMP
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The subscript N corresponds to the unpowered and subscript c to the powered DOFs. Here,

 and  are the state vectors of the  unpowered  k-th powered

DOFs ,  is the rotor current of the corresponding DC motor, and  and

are their orders. , , , and , , and

 are the system matrices, force distribution vectors, and generalized forces of the unpowered

and powered DOFs, respectively.  and  are defined by Equation (27.50). Taking into account

the form of the actuator matrix  and the form of the unpowered DOF (Equation (27.50)),

expression (27.52) can be written as:13,22

 (27.53)

where  are the elements of the matrix  or, in a compact form:

where  is the state vector of the composite subsystem, and   and

 are the subsystem matrix, matrix of force distribution and vector of control distribution,

respectively. Thus, , , and  Obviously, Equation (27.53)

defines only the k-th composite subsystem model. The set J is defined as J = {j, j = 2 m-n+1, …, m}.

It is assumed that the k-th powered joint is associated with the -th unpowered joint.

In the stability analysis, all decoupled subsystems must be exponentially stable. If the subsystem
corresponds to the joints of the kinematic chain, their coupling is represented by the moments
about the joint axis. In fact, decoupling means an investigation of the subsystem model without
the term that corresponds to the generalized force. In case of a composite subsystem this term is

, i.e., the decoupled composite subsystem can be written as:

.  (27.54)

The interaction between these DOFs is the only way to control the motion of the unpowered
DOFs. To preserve the integrity of the decoupled composite model, some additional elements should
be introduced into the matrix  in the places representing the influence of powered DOFs on the
unpowered DOFs and vice versa. The model of the composite subsystem has the final form:13,22

(27.55)
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or

.

The vector  represents the influence of the powered DOF on the unpowered one,

whereas  represents an opposite effect. Since the vectors  and  are chosen

arbitrarily,  and  will be subtracted from , i.e., ,

, and .

The composite subsystem model formed in this way is suitable for stability investigation and
enables the stability analysis of a system having joints without actuators. It should be emphasized
that the models of composite subsystems (27.55) are exact, i.e., they contain no approximations.
The model (27.55) coincides with the original model of the -th unpowered joint (27.48) and the
model of the k-th powered joint with the actuator (27.47) that is driving the k-th joint. We rearranged
the model in order to present it in a more convenient form. The mathematical model of the
mechanism part that consists of composite subsystems is

 (27.56)

where  is the state vector; . ,   =  is

the system matrix, while  and ,  are the distribution

matrices of control force;  and  are the corresponding control and force

defined by Equation (27.55),  and is the order of the model formed of composite subsystems:

.  (27.57)

Thus, the mathematical model of a complete biped mechanism S with the composite subsystems
included, can be obtained by uniting the model of composite subsystems (Equation (27.56)) and
the powered DOFs:

S: (27.58)

where  is the system state vector 

. Matrices , and  are 

 ,    and  

 .

The complete system S (Equation (27.58)) is composed of m subsystems: (2 m – n) subsystems
correspond to the powered joints modeled as in Equation (27.47), and (n – m) composite subsystems
modeled as in Equation (27.56). In fact, all the subsystems can be written in the same form:

 (27.59)
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where  stands for  if i = 1,2, …, 2 m – n, and  if i = 2m – n + 1, …,m. The same holds for
, and , while  stands for  if i = 1,2, …, 2 m – n, and for  if i = 2m – n + 1, …,

m. The order of the subsystems (Equation (27.59)) is denoted by  (though it might be either 
or , depending on i). Thus, we obtain a model of the system S in a form convenient for the
application of the chosen method for stability analysis.

27.4.2 Stability Analysis

In regard to biped locomotion systems, the most suitable stability analysis seems to be the definition
of practical stability.13,22 Accordingly, the system is considered to be practically stable if 
implies  where  and , where 
and , .

Let us consider the overall system model S defined as in Equation (27.59), which can be
considered as a set of m subsystems  (of the composite or powered joints) coupled through the
term .13,22

.

Let us assume the nominal trajectory of the state vector  be given in such a way
that it satisfies . Further, let us assume
the nominal trajectory  has been selected in such a way that we can find a nominal (pro-
grammed) control , which is a function of time, and which satisfies:

 (27.60)

where   denotes the nominal
values of . Because the subsystems (27.59) include the composite subsystems, the nominal
trajectory  satisfies the composite subsystems. We assume that the nominal trajectory 
and the corresponding nominal control , satisfying Equation (27.60), can be determined.
However, due to the perturbation actions acting upon the system, a deviation of the system state
from its nominal trajectory must appear. The model of deviation from the nominal trajectory can
be written according to (27.59) and (27.60) as:

 (27.61)

where . The problem is to stabilize the model
of deviation (27.61) from the nominal trajectory , i.e., we have to synthesize the control 
such that the model of deviation from  (27.61) is stabilized. The aim is to ensure practical
stability of the system around the nominal trajectory , so that for each , the
conditions  and   are fulfilled.

Let us synthesize a decentralized control. Consider an approximate model of deviation in its
decoupled form (i.e., the model in which the coupling terms between subsystems  are
neglected):

.  (27.62)

The decoupled model of the system (Equation (27.62)) represents a set of decoupled linear
subsystems that can be stabilized by simple linear feedback control:
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 (27.63)

where  is the vector of local feedback gains selected so that the subsystem:

 (27.64)

(where  is a closed-loop subsystem matrix) is exponentially stable. In (27.64), we neglected the
amplitude saturation upon the input . If this nonlinearity is taken into account, the
subsystem Equation (27.64) is exponentially stabilized in the finite region  in the state space
with a desired stability degree . If the decoupled subsystems Equation (27.64) are considered,
it is obvious that this model will be exponentially stable in the region:13,17

.  (27.65)

We shall analyze stability of the overall system (27.61) when the decentralized control (27.63)
is applied. Let us express the subsystems characteristics by the Lyapunov functions, which, with
their derivatives along with solutions for decoupled subsystems, have to satisfy:2,13,23

 (27.66)

 (27.67)

for  ,  are real numbers for k = 1,2,3,4, . The analysis concerning
the stability on finite regions using the aggregation–decomposition method can be conservative.
Functions  should be chosen to represent the best estimates of the degree of exponential stability

 of the decoupled subsystems. Thus, we should select such Lyapunov function  that satis-
fies:13,17

 (27.68)

where  is taken along the trajectory of the decoupled subsystem (27.64). Let us select the
Lyapunov function in the form:

 (27.69)

where the matrix  (symmetric and positive definite) can be derived as the solution of the
Lyapunov matrix equation:23
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where  is an arbitrarily defined, symmetric, and positive definite matrix. If we select 
to be equal to , then the selected Lyapunov function (27.69) obviously satisfies
Equation (27.68). Since the control signal is of limited amplitude, the condition of Equation (27.68)
can be satisfied only in the finite region of initial conditions , i.e., the decoupled system
is asymptotically stable in the region X defined by Equation (27.65). The region  can be estimated
by the regions  via Lyapunov functions with an appropriate choice of :
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 (27.71)

where > 0 are positive numbers. Then, the region:

 (27.72)

is the best estimate of the region of asymptotic stability X of the set of decoupled subsystems
(27.64). However, in Equation (27.64) we neglected the coupling terms .

We should investigate how coupling influences the stability of the overall system S. Since

, the coupling influence can be estimated by the numbers   satis-

fying:24

.  (27.73)

A sufficient condition for asymptotic stability of the overall system S in the region  is:25

GVo< 0  (27.74)

where Vo is the m × 1 vector and Vo = (V1o, …, Vmo)T, Vo∈Rm, and the elements of the m × m matrix
G are defined as:

 (27.75)

where δij is the Kronecker symbol.
It is necessary to point out that Equation (27.74) is a sufficient but not necessary condition. If

this condition is not fulfilled, we cannot say anything about the system stability. If Equation (27.74)
is fulfilled, then  is an estimate of the region of the overall system stability. It is possible to
estimate the region  that contains the system state during the tracking of the nominal trajectory

 by:

 (27.76)

where β > 0 can be computed from:

 (27.77)

where .

The inequality (27.76) is an estimation of shrinkage of the region  that contains a solution
of the system S. Now the practical stability of the system can be checked out. If

 (27.78)

is satisfied, then the system S is practically stable around xo(t). If the local linear feedback controllers
defined by Equation (27.63) are not sufficient to stabilize the system, an additional control input
should be introduced. We may introduce the global control in the form (we use  instead of ):
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 (27.79)

where  and  are the scalar gains defined by Equation (27.38).  represents a quantity that
corresponds to the coupling . By measuring forces at the contact point of the sole of the
supporting leg and the ground, we get information on the effects of coupling upon the unpowered
joint . Therefore, we can establish a global control from the unpowered joint to the one of the
powered joints (i.e., to its actuator) and compensate for the effects of coupling upon the unpowered
joint. If a global control is introduced, the stability analysis can be performed as described above.
However, the numbers  estimating coupling are now defined to satisfy [instead of (27.73)] the
following condition:13,17

, .  (27.80)

The next step is to check the conditions (27.74), i.e., to test whether the system with the applied
local and global control is asymptotically stable in the region . The  in Equation (27.75)
must be replaced by . If the global control is properly selected,  must satisfy:

≤ .

Therefore, the fulfillment of stability test is easier when the global control is introduced than if
only the local control is applied.

27.4.3 Example

The scheme of the locomotion mechanism is the same as in Figure 27.22. Each powered joint is
modeled as one subsystem; the composite subsystem comprises the models of one powered and
one unpowered joint. The inactive DOFs are not included in the subsystem modeling. To make the
examples of stability analysis easier to follow, a redrawn scheme of the same mechanism is presented
in Figure 27.25, with only those DOFs that will be included in the stability analysis. All the joints
represented by the unit rotational axes  (i = 1, . ., 9) and the corresponding links are renumbered.
The link representing the upper body comprises the trunk and both hands. We shall investigate
system stability in the sagittal plane only, so that there is only one unpowered DOF. Thus, the
mechanism considered here has nine DOFs (n = 9), and eight of them (m = 8) are powered. The
elements of matrices of the actuator models and their distribution per joint are given in Table 27.3.

The nominal trajectories are synthesized using the prescribed synergy method. The control input
to the i-th actuator consists of two parts:

ui = uoi + ∆ui  (27.81)

where uoi is the nominal control input to the i-th actuator while ∆ui is the corrective input to the
same actuator, synthesized at the level of perturbed regimes. The control law (27.37) holds for the
subsystems i = (1, 2, . ., 2m – n), and a similar control is derived for the composite subsystems,
taking into account that  values for the composite subsystems are the (2 × 1) vectors.

In Equation (27.37), the part depending only on local states of the i-th joint corresponds to the
local and the rest to the global control. The global control is introduced in the form of feedback
with respect to both the driving torques , and the part .  represents the force feedback
(i.e., the measured moments about joints). Additional feedback with respect to the ZMP position
defined by Equation (27.45) is also available.

Let us determine the stability region Xi of the decoupled subsystem. Consider first the local
control (27.37 and 27.38) that has to stabilize the decoupled subsystem. If we assume that the
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complete state vector  is measurable, the closed-loop subsystem is given by (27.64). In the case
of a stable subsystem, the poles must be at the left-hand side of the complex plane. If we denote
the modulus of their real part by , the subsystem will be exponentially stable with a stability
degree defined as:

 (27.82)

which can be guaranteed only if the control inputs are within the limits:

.  (27.83)

The actuator velocity–torque characteristics limit the values of the state coordinates. In view of
these characteristics we can write:

 (27.84)

FIGURE 27.25 Simplified scheme of mechanical biped structure with disposition of the modeled subsystems.

TABLE 27.3 Actuator Parameters

Term

Actuator a2,2 a2,3 a3,2 a3,3 b3 f2 Used at joint

M1 –3.0 0.13 –105 –450 2000 –7 ⋅ 10-4 2, 3, 6, 7
M2 –1.928 4.03 –6800 –264 400 –0.179 4, 5, 8, 9

ix∆

p
iσ

i
p

p
iΠ =

=1 2 3, ,
min σ

i
LT i

m
i

m
i

t T

ik x u u u t∆ < = −
∈

max ( )o

i
i

i R
i

m
i

i
T i

m
i

k q k i k k x k
2 3∆ ∆ ∆˙ + ≤ → ≤

8596Ch27Frame  Page 763  Tuesday, November 6, 2001  9:37 PM

© 2002 by CRC Press LLC



where  and  are defined by the motor characteristics. Further, the regions of
allowable angle deviations for each DOF are introduced. In this way, the stability regions are
constrained for both the powered and composite subsystems.

We may define a finite region Xi (according to (27.65)) in the state space  in which the
subsystem Si is exponentially stable with a stability degree :

.  (27.85)

To investigate the stability of the whole system, the Lyapunov subsystem functions must be
chosen according to Equation (27.69), taking into account the relation (27.68), which has to be
satisfied in the region Xi .  will be the estimate of Xi according to:

.

To investigate asymptotic stability of the overall system, the values , which estimate the
subsystem coupling, have to be determined according to Equation (27.80). The expression for the
composite subsystem is of the form:13,22

, i = 2m – n + 1, …, m

where the global control by both  and  is introduced. If for  thus defined, the condition
(27.74) is satisfied, it can be claimed that region , defined by (27.72), is an estimate of the region
of the overall system stability.

We will form the composite subsystem model of the models of the unpowered DOFs and ankle
joint. The powered subsystem model S1 corresponds to the model of joint 3 powered by the actuator,
S2 corresponds to joint 4, S3 to joint 5, S4 to joint 6, S5 to joint 7, S6 to joint 8, S7 to joint 9. The
last model of the powered subsystem, S8, will be included in the composite subsystem. Thus, the
model of joint 2 with the model of the corresponding actuator corresponds to S8. The model of
composite subsystem will be denoted S8* and will comprise the models of the unpowered subsystem
and S8. The composite subsystem matrices  and  and vector  are defined as:

, , .

The vectors from Equation (27.55) are   = [–80, –10, 0] and   = [300, 100]. The Lyapunov
functions of all subsystems are selected in the form of Equation (27.69). The matrices Hi are selected
to satisfy Equation (27.70) and they are obtained as:
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The Lyapunov matrices corresponding to the models of powered subsystems Si are:

 i = 1, 4, 5  i = 

2, 3, 6, 7.

The regions of joint angle deviations (the superscripts correspond to the subsystems model
numbers) in which stability is investigated are (in radians):

where  and  correspond to the joints comprising the composite subsystem, i.e., the unpow-
ered and powered DOFs (the ankle joint with the axis of rotation ).

The constants Vio defining the estimates of the stability regions  are computed as:

.

The constant V8o corresponds to the composite subsystem. The results of stability analysis are
presented in Table 27.4. Three types of control laws are investigated:

1. The complete feedback structure defined by Equation (27.37) plus the global control with
respect to ZMP displacement defined by Equation (27.44).

2. The local control is introduced (the corresponding gains , , and  are defined in
(27.38) plus global control with respect to ZMP position (27.44).

3. Only local control from Equation (27.37) is introduced.

Table 27.4 presents results (matrix G, and vectors Gvo and η) for all three control laws. The first
three rows correspond to laws 1 through 3, respectively. The first and second groups of three rows
each correspond to the hip and knee of the supporting leg. The third, fourth, and fifth groups
represent the hip, knee, and ankle of the leg in swing phase. The sixth and seventh groups correspond
to trunk motion in the frontal and sagittal planes. The last group of three rows represents the
composite subsystem.

To draw a final conclusion about system stability, the product  must be observed. If this
product is negative, the stability under the given conditions is proved. The vector  represents
shrinkage of the bounds of the regions .

27.5 Realization of Anthropomorphic Mechanisms 
and Humanoid Robots

Locomotion activity, especially the human gait, belongs to a class of highly automated motion.
Bernstein26 was the first to comprehend this fact. Humans have at their disposal to achieve
complete skeletal (locomotion–manipulation) activity several hundred muscles that allow over
300 equivalent DOFs. In view of the high number of biological actuators through which humans
exercise motor activity, the imitation of this activity seems to be a hopelessly difficult task.
Understanding the mechanisms of gait control and other skeletal activities is extremely difficult,
especially if one bears in mind the necessarily detailed insight into the multilevel structures to
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control human locomotion and manipulation activity. Despite these challenges, technological
advances have allowed us to create mechanical counterparts to humans that are capable of
performing some human tasks. This section will briefly describe active anthropomorphic mech-
anisms and humanoid robots.

TABLE 27.4 Results of Stability Analysis (Composite System Consisting of Ankle and 
Unpowered Joint)
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27.5.1 Active Exoskeletons

The first pneumatically driven active anthropomorphic exoskeleton (Figure 27.26) was created in
1969 at the Mihajlo Pupin Institute (Belgrade).13 Each leg had its own drive consisting of only one
pneumatic cylinder, which, through kinematic linkage, actuated also the knee, while the foot was
passive. The device produced a sliding-foot gait.

After this first attempt of anthropomorphic gait the researchers in the Robotics Laboratory of
the Mihajlo Pupin Institute also developed new models of partial and complete exoskeletons
dedicated to the restoration of basic locomotion activities of paraplegics. A complete pneumatically
driven active exoskeleton for rehabilitation use was developed and manufactured in 1972.13,27,28 It
is depicted in Figure 27.27.

The first experiments with these exoskeletons were successfully carried out at the Belgrade
Orthopedic Clinic during 1972 and 1973. It was concluded in 1973 that further development of
pneumatically driven active exoskeletons for rehabilitation was not promising because of poor
energy autonomy provided by the pneumatic source of energy. The decision was made to switch
to the development of an active exoskeleton with electromechanical drives.13,27,28

In 1974, the first electromechanical active exoskeleton (Figure 27.28) was realized. It included
a number of sophisticated solutions in the design of the exoskeleton structure. In addition to the
basic motion of the leg in the sagittal plane, the hip joint performed two kinematically programmed

FIGURE 27.26 Kinematic walker (1969). FIGURE 27.27 Complete pneumatically driven
active exoskeleton.
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motions, pelvic twist and sideways motion, to achieve more stable and quasi-realistic gait. When
this exoskeleton type was realized, light batteries were not available to power the devices and
computer technology was in its pre-microprocessor stage. For these reasons, the power source and
control system were outside the exoskeleton, and this greatly limited the utility of the device.

However, it should be pointed out that the above technological limitations have been overcome.
An early conception of artificial gait for rehabilitation purposes, having in mind the real possibility
of active exoskeleton autonomy with respect to control and energy, will be realizable in a much
more successful way.

27.5.2 Humanoid Robots

High expectations accompanied the appearance of robots for personal use. Such robots coexist with
humans and provide support for the aged and the physically handicapped.

An anthropomorphic form of robot is usually expected when the robot is intended for personal
use. A human-like or humanoid robot that works with humans as a partner in the living environment
needs to share the same workspace and possess the common thinking and behavioral modes of
humans. A humanoid robot will integrate information from its sensors and coordinate its actions
to realize high level and natural communication with humans by using speech, facial expression,
and body motion.

The Waseda University has been one of the leading research centers working on anthropomorphic
robots since I. Kato and his colleagues started the WABOT (WAseda roBOT) project and produced
the first biped walking robot, WABOT-1, in 1973 (Figure 27.29).29

In 1984, A. Takanishi and his co-workers developed a hydraulic biped robot (Waseda Leg 10
Refined Dynamic or WL-10RD) that was able to walk dynamically. By 1985, their dynamic biped
had the ability to walk on slopes and stairs. Takanishi’s group achieved compensation by lower
limbs and trunk in 1986. They introduced an effective computation algorithm to obtain the periodic

FIGURE 27.28 Complete electromechanical exoskeleton.
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upper-body trajectory from the arbitrarily preset ZMP and leg trajectories. Their work was the first
example of implementation of the ZMP concept into a humanoid robot. The WL-12 series robots
achieved dynamic walking and turning under conditions of unknown external forces and on
unknown surfaces (Figure 27.30).

Takanishi and his co-workers also developed a bipedal humanoid robot called WABIAN (WAseda
BIpedal humANoid) and the method of its control (Figure 27.31). They accomplished the following
design goals: (1) develop an electrically powered bipedal humanoid robot having upper limbs, a three
DOF trunk, and a head (the total number of active DOFs is 35), (2) devise a motion pattern-generating
program to study overall cooperative motion, and (3) support the effectiveness of a dynamic walking
system that allows walking, dancing with the motion of the  three DOF trunk and upper limbs,
carrying of a load with both hands, and continuous bipedal walking in human living space based
on a closed-loop dynamic walking control method.29,31

The most successful representation of a humanoid robot is the Honda humanoid robot.32 The
goal was to develop a robot capable of coexisting and collaborating with humans and performing
tasks that humans cannot perform. Honda wanted to develop a new robot to meet consumers’
needs — not a robot limited to specialized operations. Such a robot is capable of moving around
the house, encountering various obstacles such as staircases, doors, furniture, etc.

FIGURE 27.29 WABOT-1 (1973).
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The legs of the Honda robot have 12 DOFs and the redundant arms have 14 DOFs. The hand
is similar to a two-finger gripper with two DOFs. The head has two DOFs, bringing the total number
of DOFs to 32 (Figure 27.32). Honda developed several types of biped robots. The maximum
walking speed achieved by a specialized robot was 4.7 km/h. To maintain dynamical equilibrium
and stabilize the perturbed work regime of the robot, Honda concluded that the robotic system
required a body inclination sensor and a ground reaction sensor for each foot. The inclination sensor
consists of three accelerometers and three angular speed sensors (optical fiber gyros). It is also
used as a navigation sensor. Each foot and wrist has a six-axis (three component forces and
three component moments) sensor. The robot is also equipped with an impact absorption mechanism
to damp the landing impact ground reaction force. The overall height of the robot is 1820 mm, its
width is 600 mm, and it weighs 210 kg.

To recover the robots’s posture, the ground reaction force control shifts the total ground reaction
force to an appropriate position by adjusting each foot’s desired position and posture. Model ZMP
is used to control the shifting of the desired ZMP to an appropriate position in order to recover
posture. The foot landing position control corrects the relative position of the upper body and feet
in conjunction with the ZMP control. By having the three controls working simultaneously Honda
has realized the robot with a posture stabilizing control similar to that of the human.

Honda has continued its research on biped walking humanoid robots. In 2000, it developed the
ASIMO (Advanced Step in Innovative Mobility) humanoid robot.33 It has an overall height of
1200 mm, weighs 43 kg, and has 26 DOFs. The robot is compatible with human living environments.
The walking technology includes behavior prediction such that the robot can change its walking
motion freely and smoothly without interruption. A central role in the control strategy is played
by the model ZMP control.

FIGURE 27.30 Dynamic walking with a compensat-
ing body: WL-12 (1986).

FIGURE 27.31 Bipedal humanoid robot WABIAN.
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27.5.3 Virtual Humanoid Robot Platform

Nakamura and Takanishi and a group of associates developed the most complete software tool for
modeling and control of humanoid robots reported to date. They developed a simulator of humanoid
robots and a controller of whole body motion.34 The basic modules of this software include:

1. A dynamic simulator that executes efficient dynamics and kinematics and can accomodate
structure changes of any open or closed kinematic chain, and even such kinematic chains as
to change connectivity in operation. The connectivity change function is essential because
it is often seen when a humanoid walks, touches or holds the environment, grasps an object
with the both hands, and is even connected with another humanoid.

2. A view simulator or image synthesis that consists of modeling, illumination, shapes and
materials of objects in a scene, and cameras. The shapes of artificial objects can be obtained
from CAD data, but it is hard to produce material models of surfaces. The simulator can
generate sequences of the fields of view from the eyes of the robot according to the dynamics
simulation. When the view simulator is integrated with the dynamics simulator, visual
feedback of humanoid robots can be simulated.

3. A humanoid motion controller that can handle biped locomotion, dynamic balance control
at the standing position, and collision avoidance.

As part of the Virtual Humanoid Robot Platform (V-HRP) project, a motion controller has been
developed to achieve biped locomotion adaptive to terrain, including walking straight, turning,
going up or down the stairs, and walking on rugged ground.34 With this programming library,
complex locomotion can be realized as a sequence of basic motion patterns. The link between the
basic motions of the robot is automatically generated for continuous motion control. Control data

FIGURE 27.32 Honda humanoid robot P2.
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for a walk adaptable to terrain generated by the library have been examined and found to be
consistent with the mechanism’s dynamics obtained using a dynamics simulator. The data’s con-
sistency has also been proven by experiment using the hardware model developed to verify the
compatibility of the simulation model with the real world.

Concerning this module, two examples were presented. In the first example the robot is standing
on two legs, and both legs are controlled in the same manner. With the proposed balance control,
the robot can successfully sit down, reach the ground with its arms, and stand up again. To
demonstrate 3-D balance, a kicking motion was tested. The robot can fully swing its left leg in one
second while balancing with its right leg. With the proposed control, the robot is capable of
successful kicking and balancing. The motions of the arms and body were added to provide a
natural appearance. All compensation is done by the ankle actuators of the supporting leg.

These software modules are integrated via CORBA (Common Object Request Broker Architec-
ture). This enables Internet clients to use the software. The modules are implemented as CORBA
servers, and a client can utilize them if the servers are accessible via the IIOP (Internet Inter Orb
Protocol).

The developers of the Humanoid Robot Platform expect it to be “the common base of humanoid
robotics research focusing on software development for the community.”

27.5.4 New Application of the ZMP Concept in Human Gait Restoration

A novel application of ZMP for human gait rehabilitation using treadmill training and partial body
weight bearing (PWB) has been proposed.12 This methodology has recently been successfully used
for gait recovery by stroke patients.35

One of the Wisa-ROMED projects endowed by the Fraunhofer Community developed a dem-
onstration system referred to as RehaRob which represents the first application of the ZMP concept
for evaluation and control of the human gait. The RehaRob is a powerful robotic system for
supporting gait rehabilitation and restoration of motor functions. It combines the advantages of
PWB with a number of robotic and humanoid control functions. Safe, reliable, and dynamically
controlled weight suspension and posture control systems support patients and allow them to
autonomously recover their gaits early in the rehabilitation stage.

The global RehaRob architecture is presented in Figure 27.33. The system consists of an active
weight-relieving robotic system (wire robot) that performs partial dynamic weight compensation

FIGURE 27.33 Global RehaRob concept.
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and posture control synchronously with the human lower limb motion; a harness system (patient
interface); a treadmill and/or lifting system axial motion device (for rehabilitation of orthopedic
patients) that supports repetitive motion progression; a sensory system (motion camera, insole
pressure sensors, force sensors, inclinometers, wire position sensors) that collects data about the
human gait and provides feedback to the control system; a system controlling the wire robot,
treadmill (the axial motion system), rehabilitation planning, and programming system (user inter-
face); an AR or VR system providing visual feedback; computer safety control; and a mechanical
system providing exception-handling functions.

The robot wires are connected to the trunk and pelvis at optimized attachment points (in the system
under development, a total of ten wires are applied). The robot exerts active external forces upon the
trunk and pelvis to reduce the weight on the lower limbs (reaction force) and balance the posture, thus
essentially supporting the gait. Redundant wires are needed to ensure tension in all wires independent
of dynamic loads. The rigid trunk–pelvis system connected by a spherical joint has nine DOFs.

The RehaRob control is based on the ZMP concept. It utilizes wire force, foot reactions mea-
surements, and a model of wire robot and human interaction to estimate and control ZMP. The
application of the human motion ZMP trajectory for controlling a biped robot has recently been
proposed.36 For body modeling, the RehaRob uses a rigid model of a human developed with
MATLAB (MatMan). The model has 37 DOFs. Figure 27.34 presents the results of simulation of
the ZMP and ground projection of CoM (GCoM) trajectories for the human gait during stance
phase (stance and swing legs are denoted in the figure). Apparently, in a period of time the ZMP
is within the stance foot supporting area, while in the remaining time it leaves this area following

FIGURE 27.34 ZMP and GCoM trajectories during single limb phase.
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the moving swing foot. In a stable gait, the ZMP remains within the enveloping area constrained
by foot projections on the ground.

Unlike the ZMP model of human/humanoid walking (Equation 27.7), the RehaRob system
includes additional wire-active forces affecting the equilibrium conditions (27.2). By means of the
wire forces, it is possible to control both body reaction and ZMP location.

The motion of the relevant upper and lower limbs (e.g., knee) affecting system dynamics can be
measured by relatively inexpensive sensors. The trunk and pelvis positions in the RehaRob system
are directly measured and controlled using both wires and body sensors. To cope with model
inaccuracies and ZMP estimation errors, the RehaRob system implements a relatively complex
control structure closing several control loops (Figure 27.35) around reaction force and gait posture
and uses the internal wire robot and treadmill control. This control scheme includes the basic gait
pattern generator (initial contact, stance, swing, single limb), which, based on the captured gait
state and required weight suspension percentage generates the desired ground reaction, as well as
nominal posture and ZMP location data. These values are compared with the measured (i.e.,
estimated) ones, and the control feedback is closed around the dynamic human gait and wire robot
models. This provides the inputs to the internal wire and treadmill control loops (treadmill velocity,
pulley position, and wire forces). The local controllers control the wire robot system so that the
posture can support and follow the joint motion of the desired walking pattern. This pattern is a
combination of ideal walking patterns (templates) including desired weight suspension and the
subject’s gait performance estimated using the sensory system. Gait balance is achieved by the
ZMP and posture controls for the generated pattern. The gait template generator includes data about
the subject’s abnormal gait, as well as the emergency and exception-handling strategies (to com-
pensate for 100% weight upon the stance leg if the conditions for single-leg support are not available,
for example, due to improper ankle or knee joint position, etc.). This control scheme is similar to
the recent humanoid control approaches proposed in Hirai et al.32 and Yamaguchi et al.37

27.6 Conclusion

Having at our disposal limited space in a thematically widely conceived handbook, it was a difficult
task to present such a broad and attractive field of scientific and professional interest (one recently
experiencing tremendous impetus) in a way that would be both an introduction and offer in-depth
coverage of humanoid robotics.

FIGURE 27.35 RehaRobot control concept.
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Because of this, some new challenging aspects and dilemmas concerning humanoid robotics had
to be omitted, as well as new views on its current importance and role in the future. Some examples
include issues such as the new frontiers of humanoid robotics, human–humanoid interactions, using
humanoid robots to study human behavior, humanoid features in public places, a neurobiological
perspective on humanoid robot design, humanoid robot cognition. Because the character of Mechan-
ical Design Handbook: Modeling, Measurement, and Control is mostly determined by dynamics,
dynamic control, and advanced design diverse types of objects and systems, the authors believe
they need to mention, at least briefly, some of the phenomena pertaining to humanoid robots that
deserve detailed studies to make these robots more suitable for use.

The above mostly relates to refining the trajectory of the zero-moment point, especially when
the gait passes from the single-support to the double-support phase. It is then that the introduction
of the semi-rigid foot, in contrast to its rigid version, offers the possibility of a more faithful
representation of the perturbation state of the humanoid robot to prevent the robot instantaneously
reaching its foot edge — the case that has been considered up to now.

Further very important improvements are related to a more reliable description of the constraint
environment model, which enables more realistic insight into robot–environment interactions that
offer the possibility of control dynamic performance, e.g., by reducing the dynamic impact of the
robot’s foot at the end of the swing phase, which is achieved by applying active dampers at the
ankle joint contstruction, as well as by passive or semi-active dampers at the other joints of the
mechanical construction. 

Finally, let us emphasize once more that the gait of humanoid robots is an extremely complex
contact task involving a mobile object whose dynamics include interaction with its environment’s
dynamics, which means that (among other things) it is necessary to ensure simultaneous control
with respect to both position and contact force. Some preliminary results indicate justification of
such an approach, 38,39 whereas more extensive results will be achieved by a more faithful analysis
of dynamic contact and the synthesis of the appropriate laws of simultaneous dynamic position
force control.40
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19. Borovać, B., Vukobratović, M., and Surla, D., An approach to biped control synthesis, Robotica,
7, 231–241, 1989.
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21. Stokić, D. and Vukobratović, M., Practical stabilization of robotic systems by decentralized con-
trol, IFAC Automatica, 20(3), 1984.
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