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24.1 Introduction

 

Robots and machines that perform various tasks in an intelligent and autonomous manner are
required in many contemporary technical systems. Autonomous robots have to perform various
anthropomorphic tasks in both unfamiliar or familiar working environments by themselves much
like humans. They have to be able to determine all possible actions in unpredictable dynamic
environments using information from various sensors. In advance, human operators can transfer to
robots the knowledge, experience, and skill to solve complex tasks. In the case of a robot performing
tasks in an unknown enviroment, the knowledge may not be sufficient. Hence, robots have to adapt
and be capable of acquiring new knowledge through learning. The basic components of robot
intelligence are actuation, perception, and control. Significant effort has been attempted to make
robots more intelligent by integrating advanced sensor systems as vision, tactile sensing, etc. But,
one of the ultimate and primary goals of contemporary robotics is development of intelligent
algorithms that can further improve the performance of robotic systems, using the above-mentioned
human intelligent functions.

Intelligent control is a new discipline that has emerged from the classical control disciplines
with primary research interest in specific kinds of technological systems (systems with recognition
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in the loop, systems with elements of learning and self-organization, systems that sometimes do
not allow for representation in a conventional form of differential and integral calculus). Intelligent
control studies high-level control in which control strategies are generated using human intelligent
functions such as perception, simultaneous utilization of a memory, association, reasoning, learning,
or multi-level decision making in response to fuzzy or qualitative commands. Also, one of the main
objectives of intelligent control is to design a system with acceptable performance characteristics
over a very wide range of structured and unstructured uncertainties.

The conditions for development of intelligent control techniques in robotics are different. It is
well known that classic model-based control algorithms for manipulation robots cannot provide
desirable solutions, because traditional control laws are, in most cases, based on a model with
incomplete information and partially known or inaccurately defined parameters. Classic algorithms
are extremely sensitive to the lack of sensor information, unplanned events, and unfamiliar situations
in robots’ working environment. Robot performance is not able to capture and utilize past experience
and available human expertise. The previously mentioned facts and examples provide motivation
for robotic intelligent control capable of ensuring that manipulation robots can sense the environ-
ment, process the information necessary for uncertainty reduction, and plan, generate, and execute
high-quality control action. Also, efficient robotic intelligent control systems must be based on the
following features:

1. Robustness and great adaptability to system uncertainties and environment changes
2. Learning and self-organizing capabilities with generalization of acquired knowledge
3. Real-time implementation on robot controllers using fast processing architectures

The fundamental aim of intelligent control in robotics represents the problem of uncertainties
and their active compensation. Our knowledge of robotic systems is in most cases incomplete,
because it is impossible to describe their behavior in a rigorous mathematical manner. Hence, it is
very important to include learning capabilities in control algorithms, i.e., the ability to acquire
autonomous knowledge about robot systems and their environment. In this way, using learning
active compensation of uncertainties is realized, which results in the continous improvement of
robotic performances. Another important characteristic that must be included is knowledge gener-
alization, i.e., the application of acquired knowledge to the general domain of problems and work
tasks.

Few intelligent paradigms are capable of solving intelligent control problems in robotics. In
addition, symbolic knowledge-based systems (expert systems), connectionist theory, fuzzy logic,
and evolutionary computation theory (genetic algorithms) are very important in the development
of intelligent robot control algorithms. Also, important in the development of efficient algorithms
are hybrid techniques based on integration of particular techniques such as neuro-fuzzy networks,
neuro-genetic, and fuzzy-genetic algorithms.

Connectionist systems (neural networks) represent massively parallel distributed networks with
the ability to serve in advanced robot control loops as learning and compensation elements using
nonlinear mapping, learning, parallel processing, self-organizing, and generalization. Usually, learn-
ing and control in neurocontrollers are performed simultaneously, and learning continues as long
as perturbations are present in the robot under control and/or its environment.

Fuzzy control systems based on mathematical formulation of fuzzy logic have the ability to
represent human knowledge or experience as a set of fuzzy rules. Fuzzy robot controllers use human
knowhow or heuristic rules in the form of linguistic if–then rules, while a fuzzy inference engine
computes efficient control action for a given purpose.

The theory of evolutionary computation with genetic algorithms represents a global optimization
search approach that is based on the mechanics of natural selection and natural genetics. It combines
survival of the fittest among string structures with a structured yet randomized information exchange
to form a search algorithm with expected ever-improving perfomance.
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The purpose of this chapter is to present intelligent techniques as new paradigms and tools in robotics.
Basic principles and concepts are given, with an outline of a number of algorithms that have been
shown to simulate or use a diversity of intelligent concepts for sophisticated robot control systems.

 

24.2 Connectionist Approach in Robotics

 

24.2.1 Basic Concepts

 

Connectionism is the study of massively parallel networks of simple neuron-like computing units.

 

9,19

 

The computational capabilities of systems with neural networks are in fact amazing and very
promising; they include not only so-called “intelligent functions” like logical reasoning, learning,
pattern recognition, formation of associations, or abstraction from examples, but also the ability to
acquire the most skillful performance for control of complex dynamic systems. They also evaluate
a large number of sensors with different modalities providing noisy and sometimes inconsistent
information. Among the useful attributes of neural networks are

•

 

Learning

 

.

 

 

 

During the training process, input patterns and corresponding desired responses
are presented to the network, and an adaptation algorithm is used to automatically adjust the
network so that it responds correctly to as many patterns as possible in a training set.

•

 

Generalization

 

. Generalization takes place if the trained network responds correctly with a
high probability of inputting patterns that were not included in the training set.

•

 

Massive parallelism

 

. Neural networks can perform massive parallel processing.

•

 

Fault tolerance

 

. In principle, damage to a few links need not significantly impair overall
performance. Network behavior gradually decays as the number of errors in cell weights or
activations increases.

•

 

Suitability for system integration

 

. Networks provide uniform representation of inputs from
diverse resources.

•

 

Suitability for realization in hardware

 

. Realization of neural networks using VLSI circuit
technology is attractive, because identical structures of neurons make fabrication of neural
networks cost-effective. However, the massive interconnection may result in some technical
difficulties, such as power consumption and circuitry layout design.

Neural networks consist of many interconnected simple nonlinear systems that are typically
modeled by appropriate activation functions. These simple nonlinear elements, called nodes or
neurons, are interconnected, and the strengths of the interconnections are denoted by parameters
called weights. A basic building block of nearly all artificial neural networks, and most other
adaptive systems, is the adaptive linear combinier, cascaded by a nonlinearity which provides
saturation for decision making. Sometimes, a fixed preprocessing network is applied to the linear
combinier to yield nonlinear decision boundaries. In multi-element networks, adaptive elements
are combined to yield different network topologies. At input, an adaptive linear combinier receives
analog or digital input vector 
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output together with the bias member 
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 (24.1)

The weighted inputs to a neuron accumulate and then pass to an activation function that determines
the neuron output:
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)  (24.2)
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The activation function of a single unit is commonly a simple nondecreasing function like threshold,
identity, sigmoid, or some other complex mathematical function. A neural network is a collection
of interconnected neurons. Neural networks may be distinguished according to the type of inter-
connection between the input and output of network. Basically, there are two types of networks:
feedforward and recurrent. In a feedforward network, there are no loops, and the signals propagate
in only one direction from an input stage through intermediate neurons to an output stage. With
the use of a continuous nonlinear activation function, this network is a static nonlinear map that
can be used efficiently as a parallel computational model of a continuous mapping. If the network
possesses some cycle or loop, i.e., signals may propagate from the output of any neuron to the
input of any neuron, then it is a feedback or recurrent neural network. In a recurrent network the
system has an internal state, and thereby the output will also depend on the internal state of the
system. Hence, the study of recurrent neural networks is connected to analysis of dynamic systems.

Neural networks are able to store experiential knowledge through learning from examples. They
can also be classified in terms of the amount of guidance that the learning process receives from
an outside agent. An 

 

unsupervised learning

 

 network learns to classify input into sets without being
told anything. A 

 

supervised learning

 

 network adjusts weights on the basis of the difference between
the values of the output units and the desired values given by the teacher using an input pattern.
Neural networks can be further characterized by their network topology, i.e., by the number of
interconnections, the node characteristics that are classified by the type of nonlinear elements used
(activation rule), and the kind of learning rules implemented.

The application of neural networks in technical problems consists of two phases:

1. “Phase of learning/adaptation/design” is the special phase of learning, modifying, and design-
ing the internal structure of the network when it acquires knowledge about the real system
as a result of interaction with system and real environment using a trial-error method, as
well as the result of the appropriate meta rules inherent to global network context.

2. “Pattern associator phase or associative memory mode” is a special phase when, using the
stored associations, the network converges toward the stable attractor or a desired solution.

 

24.2.2 Connectionist Models with Applications in Robotics

 

In contemporary neural network research, more than 20 neural network models have been devel-
oped. Because our attention is focused on the application of neural networks in robotics, we briefly
introduce some important types of network models that are commonly used in robotics applications.
There are multilayer perceptrons (MP), radial basis function networks (RBF), recurrent version of
multilayer perceptron (RMP), Hopfield networks (HN), CMAC networks, and ART networks.

For the study and application of feedforward networks it is convenient to use in addition to
single-layer neural networks, more structured ones known as multilayer networks or 

 

multilayer
perceptrons

 

. These networks with an appropriate number of hidden levels have received consider-
able attention because of better representation capabilities and the possibility of learning highly
nonlinear mappings. The typical network topology that represents a multilayer perceptron
(Figure 24.1) consists of an input layer, a sufficient number of hidden layers, and the output layer.
The following recursive relations define the network with 
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 + 1 layers:
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Each layer has an appropriate number of neural units, where each neural unit has some specific
activation function (usually a logistic sigmoid function). The weights of the networks are incre-
mentally adjusted according to appropriate learning rules, depending on the task, to improve the
system performance. They can be assigned new values in two ways: either via some prescribed
offline algorithm that remains fixed during the operation, or adjusted by a learning process. Several
powerful learning algorithms exist for feedforward networks, but the most commonly used algo-
rithm is the 

 

backpropagation algorithm

 

.

 

9

 

 The backpropagation algorithm as a typical supervised
learning procedure that adjusts weights in the local direction of greatest error reduction (steepest
descent gradient algorithm) using the square criterion between the real network output and desired
network output.

An RBF network approximates an input–output mapping by employing a linear combination of
radially symmetric functions. The 

 

k –

 

 

 

th

 

 output 

 

y

 

k

 

 is given by:

 (24.5)

where:

 (24.6)

The RBF network always has one hidden layer of computational modes with a nonmonotonic
activation function 

 

φ

 

(.). Theoretical studies have shown that the choice of activation function 

 

φ

 

(.)
is not very crucial to the effectiveness of the network. In most cases, the Gaussian RBF given by
(24.6) is used, where 

 

c

 

i

 

 and 

 

σ

 

i

 

 are selected centers and widths, respectively.
One of the earliest sensory connectionist methods capable of serving as an alternative to the

well-known backpropagation algorithm is the CMAC (cerebellar model arithmetic computer)

 

20

 

(Figure 24.2). The CMAC topology consists of a three-layer network, one layer being the sensory
or command input, the second the association layer, and the third the output layer. The association
layer is conceptual memory with high dimensionality. On the other hand, the output layer is the
actual memory with low dimensionality. The connections between these two layers are chosen in
a random way. The adjustable weights exist only between the association layer and the output layer.
Using supervised learning, the training set of patterns is presented and, accordingly, the weights
are adjusted. CMAC uses the Widrow-Hoff LMS algorithm
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 as a learning rule.

 

FIGURE 24.1

 

Multilayer perceptron.
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CMAC is an associative neural network using the feature that only a small part of the network
influences any instantaneous output. The associative property built into CMAC enables local
generalization; similar inputs produce similar outputs while distant inputs produce nearly indepen-
dent outputs. As a result, we have fast convergence properties. It is very important that practical
hardware realization using logical cell arrays exists today.

If the network possesses some cycle or loop, then it is a feedback or recurrent neural network.
In a recurrent network the system has an internal state, and the output will also depend on the
internal state of the system. These networks are essentially nonlinear dynamic systems with stability
problems. There are many different versions of inner and outer recurrent neural networks (recurrent
versions of multilayer perceptrons) for which efficient learning and stabilization algorithms must
be synthesized. One of the most commonly used recurrent networks is the Hopfield

 

23

 

 type neural
network that is very suitable for optimization problems. Hopfield introduced a network that
employed a continuous nonlinear function to describe the output behavior of the neurons. The
neurons are an approximation to biological neurons in which a simplified set of important compu-
tational properties is retained. This neural network model, which consists of nonlinear graded-
response model neurons organized into networks with effectively symmetric synaptic connections,
can be easily implemented with electronic devices. The dynamics of this network is defined by the
following equation:

 (24.7)

where 

 

α

 

, 

 

β

 

 are positive constants and 

 

I

 

i

 

 is the array of desired network inputs.
A Hopfield network can be characterized by its energy function:

 (24.8)

The network will seek to minimize the energy function as it evolves into an equilibrium state.
Therefore, one may design a neural network for function minimization by associating variables in
an optimization problem with variables in the energy function.

 

FIGURE 24.2

 

Structure of CMAC network.
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ART networks

 

 are neural networks based on the Adaptive Resonance Theory of Carpenter and
Grossberg.

 

17

 

 An ART network selects its first input as the exemplar for the first cluster. The next
input is compared to the first cluster exemplar. It is clustered with the first if the distance to the
first cluster is less than a threshold. Otherwise it is the exemplar for a new cluster. This procedure
is repeated for all the following inputs. If an input is clustered with the 

 

j

 

th cluster, the weights of
the network are updated according to the following formulae

 (24.9)
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where 

 

i 

 

= 1, 2, …, 

 

M

 

. ART networks belong to the class of unsupervised learning networks. They
are stable because new input patterns do not erase previously learned information. They are also
adaptive because new information can be incorporated until full capacity of the architecture is
utilized.

Proposed neural networks can be classified according to their ability to generalize. CMAC is a
local generalizing neural network, while MLPs and recurrent MLPs are suitable for global gener-
alization. RBF networks are placed between them. The choice for either one of the networks depends
on the requirement for local generalization. When a strong local generalization is needed, a CMAC
is most suitable. For global generalization, MLPs and recurrent MLPs provide a good alternative,
combined with an improved weight adjustment algorithm.

 

24.2.3 Learning Principles and Rules

 

Adaptation (or machine learning) deals with finding weights (and sometimes a network topology)
that will produce the desired behavior. Usually, the learning algorithm works from training exam-
ples, where each example incorporates correct input–output pairs (

 

supervised learning

 

). This
learning form is based on the acquisition of mapping by the presentation of training exemplars
(input–output data). Different than supervised learning, 

 

reinforcement learning

 

 considers the
improvement of system performances by evaluating some realized control action that is included
in the learning rules. Unsupervised learning in connectionist learning is when processing units
respond only to interesting patterns on their inputs that are based on internal learning function.

The topology of the network during the training process can be fixed or variable based on
evolution and regeneration principles.

The different iterative adaptation algorithms proposed so far are essentially designed in accor-
dance with the 

 

minimal disturbance principle:

 

 Adapt to reduce output error for the current training
pattern, with minimal disturbance to responses already learned. Two principal classes of algorithms
can be distinguished:

 

Error-correction rules,

 

 alter the weights of a network to correct the error in the output response
to the present input pattern.

 

Gradient-based rules,

 

 alter the weights of a network during each pattern presentation by a
gradient descent with the objective of reducing mean-square error, averaged over training
patterns.

The error-correction rules for networks often tend to be ad hoc. They are most often used when
training objectives are not easily quantified, or when a problem does not lend itself to tractable
analysis (for instance, networks that contain discontinuous functions, e.g., signum networks).

Gradient adaptation techniques are intended for minimization of the mean-square error associated
with an entire network of adaptive elements:
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 (24.11)

where  is the square error for particulary patterns.
The most practical and efficient algorithms typically work with one pattern presentation at a

time. This approach is referred to as 

 

pattern learning

 

, as opposite to 

 

batch learning

 

, in which
weights are adapted after presentation of all the training patterns (true 

 

real-time learning

 

 is similar
to pattern learning, but it is performed with only one pass through the data). Similar, to the single-
element case, in place of the true MSE function, the instantaneous sum squared error 

 

e

 

2

 

(

 

t

 

) is
considered, which is the sum of the square errors at each of the 

 

N

 

y

 

 outputs of the network:

 (24.12)

The corresponding instantaneous gradient is

 (24.13)

where 
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) denotes a vector of all weights in the network. The steepest descent with the instanta-
neous gradient is a process presented by

 

w

 

(

 

t

 

 + 1) = 

 

w

 

(

 

t

 

) + 

 

∆

 

w

 

(

 

t

 

)

 (24.14)

The most popular method for estimating the gradient  is the backpropagation algorithm.
The backpropagation algorithm or generalized delta rule is the basic training algorithm for multilayer

perceptrons. The basic analysis of an algorithm application will be shown using a three-layer perceptron
(one hidden layer with a sigmoid function in the hidden and output layers). The main relations in the
training process for one input–output pair 

 

p 

 

= 

 

p

 

(

 

t

 

) are given by the following relations:
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 (24.19)

where  are input vectors of the hidden and output layers of the network;  are output
vectors of the hidden and output layers;  are weighting
factors; 
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u;  is the input vector -number of inputs; yp is the output vector (Ny — number of
outputs; L1 = number of neurons in a hidden layer).

The square error criterion can be defined as:

 (24.20)

where  is the desired value of the network output; yp je output value of the networks; Ep is the
value of the square criterion for one pair of input–output data; P is the set of input–output pairs.

The corresponding gradient component for the output layer is

 (24.21)

 (24.22)

where fgi is the activation function for neuron i in layer g.
For the hidden layer, the gradient component is defined by:

 (24.23)

 (24.24)

Based on previous equations, starting from the output layer and going back, the error backprop-
agation algorithm is synthesized. The final version of the algorithm modified by weighting factors
is defined by the following relations:

 (24.25)
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 (24.28)

 (24.29)

 (24.30)

where η is the learning rate.
Also, numerous variants are used to speed up the learning process in the backpropagation

algorithm. The one important extension is the momentum technique which involves a term propor-
tional to the weight change from the previous iteration:

w(t + 1) = w(t) + ∆w(t)

 (24.31)

The momentum technique serves as a low-pass filter for gradient noise and is useful in situations
when a clean gradient estimate is required, for example, when a relatively flat local region in the
mean square error surface is encountered. All gradient-based methods are subject to convergence
on local optima. The most common remedy for this is the sporadic addition of noise to the weights
or gradients, as in simulated annealing methods. Another technique is to retrain the network several
times using different random initial weights until a satisfactory solution is found. Backpropagation
adapts the weights to seek the extremum of the objective function whose domain of attraction
contains the initial weights. Therefore, both choice of the initial weights and the form of the
objective function are critical to the network performance. The initial weights are normally set to
small random values. Experimental evidence suggests choosing the initial weights in each hidden
layer in a quasi-random manner, which ensures that at each position in a layer’s input space the
outputs of all but a few of its elements will be saturated, while ensuring that each element in the
layer is unsaturated in some region of its input space.

There are more different learning rules for speeding up the convergence process of the back-
propagation algorithm. One interesting method is using recursive least square algorithms and the
extended Kalman approach instead of gradient techniques.12

The training procedure for the RBF networks involves a few important steps:

Step 1: Group the training patterns in M subsets using some clustering algorithm (k-means
clustering algorithm) and select their centers ci.

Step 2: Compute the widths, σi, (i = 1, …, m), using some heuristic method (p-nearest neighbor
algorithm).

Step 3: Compute the RBF activation functions φi(u), for the training inputs.
Step 4: Compute the weight vectors by least squares.

24.3 Neural Network Issues in Robotics

Possible applications of neural networks in robotics include various purposes suh as vision systems,
appendage controllers for manufacturing, tactile sensing, tactile feedback gripper control, motion
control systems, situation analysis, navigation of mobile robots, solution to the inverse kinematic
problem, sensory-motor coordination, generation of limb trajectories, learning visuomotor coordi-
nation of a robot arm in 3D, etc.5,11,16,38,39,43 All these robotic tasks can be categorized according to
the type of hierarchical control level of the robotic system, i.e., neural networks can be applied at
a strategic control level (task planning), at a tactic control level (path planning), and at an executive
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control level (path control). All these control problems at different hierarchical levels can be
formulated in terms of optimization or pattern association problems. For example, autonomous
robot path planning and stereovision for task planning can be formulated as optimization problems,
while on the other hand, sensor/motor control, voluntary movement control, and cerebellar model
articulation control can be formulated as pattern association tasks. For pattern association tasks,
neural networks in robotics can have the role of function approximation (modeling of input/output
kinematic and dynamic relations) or the role of pattern classification necessary for control purposes.

24.3.1 Kinematic Robot Learning by Neural Networks

It is well known in robotics that control is applied at the level of the robot joints, while the desired
trajectory is specified through the movement of the end-effector. Hence, a control algorithm requires
the solution of the inverse kinematic problem for a complex nonlinear system (connection between
internal and external coordinates) in real time. However, in general, the path in Cartesian space is
often very complex and the end-effector location of the arm cannot be efficiently determined before
the movement is actually made. Also, the solution of the inverse kinematic problem is not unique,
because in the case of redundant robots there may be an infinite number of solutions. The conven-
tional methods of solution in this case consist of closed-form and iterative methods. These are
either limited only to a class of simple non-redundant robots or are time-consuming and the solution
may diverge because of a bad initial guess. We refer to this method as the position-based inverse
kinematic control. The velocity-based inverse kinematic control directly controls the joint velocity
(determined by the external and internal velocities of the Jacobian matrix). Velocity-based inverse
kinematic control is also called inverse Jacobian control.

The goal of kinematic learning methods is to find or approximate two previously defined
mappings: one between the external coordinate target specified by the user and internal values of
robot coordinates (position-based inverse kinematic control) and a second mapping connected to
the inverse Jacobian of the robotic system (velocity-based inverse kinematic control).

In the area of position-based inverse kinematic control problems various methods have been
proposed to solve them. The basic idea common to all these algorithms is the use of the same
topology of the neural network (multilayer perceptron) and the same learning rule: the backprop-
agation algorithm. Although the backpropagation algorithms work for robots with a small number
of degrees of freedom, they may not perform in the same way for robots with six degrees of
freedom. In fact, the problem is that these methods are naive, i.e., in the design of neural network
topology some knowledge about kinematic robot model has not been incorporated. One solution
is to use a hybrid approach, i.e., a combination of the neural network approach with the classic
iterative procedure. The iterative method gives the final solution in joint coordinates within the
specified tolerance.

In the velocity-based kinematic approaches, the neural network has to map the external velocity
into joint velocity. A very interesting approach has been proposed using the context-sensitive
networks. It is an alternative approach to the reduction of complexity, as it proposes partition of
the network input variables into two sets. One set (context input) acts as the input to a context
network. The output of the context network is used to set up the weights of the function network.
The function network maps the second set of input variables (function input) to the output. The
original function to be learned is decomposed into a parameterized family of functions, each of
which is simpler than the original one and is thus easier to learn.

Generally, the main problem in all kinematic approaches is accurately tracking a predetermined
robot trajectory. As is known, in most kinematic connectionist approaches, the kinematic input/out-
put mapping is learned offline and then control is attempted. However, it is necessary to examine
the proposed solutions by learning control of manipulation robots in real-time, because the robots
are complex dynamic systems.
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24.3.2 Dynamic Robot Learning at the Executive Control Level 

As a solution in the context of robot dynamic learning, neural network approaches provide the
implementation tools for complex input/output relations of robot dynamics without analytic mod-
eling. Perhaps the most powerful property of neural networks in robotics is their ability to model
the whole controlled system itself. In this way the connectionist controller can compensate for a
wide range of robot uncertainties. It is important to note that the application of the connectionist
solution for robot dynamic learning is not limited only to noncontact tasks. It is also applicable to
essential contact tasks, where inverse dynamic mapping is more complex, because dependence on
contact forces is included.

The application of the connectionist approach in robot control can be divided according to the
type of learning into two main classes: neurocontrol by supervised and neurocontrol by unsupervised
learning.

For the first class of neurocontrol a teacher is assumed to be available, capable of teaching the
required control. This is a good approach in the case of a human-trained controller, because it can
be used to automate a previously human-controlled system. However, in the case of automated
linear and nonlinear teachers, the teacher’s design requires a priori knowledge of the dynamics of
the robot under control. The structure of the supervised neurocontrol involves three main compo-
nents, namely, a teacher, the trainable controller, and the robot under control.1 The teacher can be
either a human controller or another automated controller (algorithm, knowledge-based process,
etc.). The trainable controller is a neural network appropriate for supervised learning prior to
training. Robot states are measured by specialized sensors and are sent to both the teacher and the
trainable controller. During control of the robot by the teacher, the control signals and the state
variables of the robot are sampled and stored for neural controller training. At the end of successful
training the neural network has learned the right control action and replaces the teacher in controlling
the robot.

In unsupervised neural learning control, no external teacher is available and the dynamics of the
robot under control is unknown and/or involves severe uncertainties. There are different principal
architectures for unsupervised robot learning.

In the specialized learning architecture (Figure 24.3), the neural network is tuned by the error
between the desired response and actual response of the system. Another solution, generalized
learning architecture (Figure 24.4), is proposed in which the network is first trained offline based
on control error, until good convergence properties are achieved, and then put in a real-time
feedforward controller where the network continues its adaptation to system changes according to
specialized learning procedures.

The most appropriate learning architectures for robot control are feedback-error learning archi-
tecture and adaptive learning architecture. The feedback-error learning architecture (Figure 24.5)
is an exclusively online achitecture for robot control that enables simultaneous processing of
learning and control. The primary interest is learning an inverse dynamic model of robot mechanism
for the tasks with holonomic constraints, where exact robot dynamics is generally unknown. The
neural network as part of feedforward control generates necessary driving torques in robot joints
as a nonlinear mapping of robot desired internal coordinates, velocities, and accelerations:

 (24.32)

where PiεRn is a joint-driving torque generated by a neural network;  are adaptive weighting
factors between neuron j in a – th layer and neuron k in b – th layer; g is nonlinear mapping.

According to the integral model of robotic systems, the decentralized control algorithm with
learning has the form

  
P g w q q q i ni jk

ab
d d d= =( , , ˙ , ˙̇ ) , , .1 K

wjk
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FIGURE 24.3 Specialized learning architecture.

FIGURE 24.4 Generalized learning architecture.

FIGURE 24.5 Feedback-error learning architecture.
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 (24.33)

 (24.34)

where fi is the nonlinear mapping which describes the nature of the robot actuator model;
KP,KF,KIεRn×n are position, velocity, and integral local feedback gains, respectively; εεRn is the
feedback error. Training and learning the proposed connectionist structure can be accomplished
using the well-known backpropagation algorithm.9 In the process of training we can use the feedback
control signal:

 (24.35)

where  is the output error for the backpropagation algorithm.
A more recent and sophisticated learning architecture (adaptive learning architecture) involves

the neural estimator that identifies some robot parameters using available information from robot
sensors (Figure 24.6). Based on information from the neural estimator, the robot controller modifies
its parameters and then generates a control signal for robot actuators. The robot sensors observe
the status of the system and make available information and parameters to the estimator and robot
controller. Based on this input, the neural estimator changes its state, moving in the state space of
its variables. The state variables of the neural estimator correspond exactly to the parameters of
robot controller. Hence, the stable-state topology of this space can be designed so that the local
minima correspond to an optimal law.

The special reactive control strategy applied to robotic dynamic control51 can be characterized
as reinforcement learning architecture. In contrast to the supervised learning paradigm, the role of
the teacher in reinforcement learning is more evaluative than instructional. The teacher provides
the learning system with an evaluation of the system performance of the robot task according to a
certain criterion. The aim of this learning system is to improve its performance by generating
appropriate outputs. In Gullapalli51 a stochastic reinforcement learning approach with application
in robotics for learning functions with continuous outputs is presented. The learning system
computes real-valued output as some function of a random activation generated using normal
distribution. The parameters of normal distribution are the mean and the standard deviation that

FIGURE 24.6 Sensor-based learning architecture.

  u u u i ni ii
f f

ii
f b= + = 1, , .K

u f q q q P KP KD KI dt i ni i d d d ii i ii i ii i= − − − =∫( , ˙ , ˙̇ , ) ˙ , , .ε ε ε 1 K

 e u i ni
bp

i
f b= = 1, ,K

e Ri
bp nε

8596Ch24Frame  Page 652  Tuesday, November 6, 2001  9:43 PM

© 2002 by CRC Press LLC



depend on current input patterns. The environment evaluates the unit output in the context of input
patterns and sends a reinforcement signal to the learning system. The aim of learning is to adjust
the mean and the standard deviation to increase the probability of producing the optimal real value
for each input pattern.

A special group of dynamic connectionist approaches is the methods that use the “black-box”
approach in the design of neural network algorithms for robot dynamic control. The “black box”
approach does not use any a priori experience or knowledge about the inverse dynamic robot
model. In this case it is a multilayer neural network with a sufficient number of hidden layers. All
we need to do is feed the multilayer neural network the necessary information (desired positions,
velocities, and accelerations at the network input and desired driving torque at the network output)
and let it learn by test trajectory. In Ozaki et al.48 a nonlinear neural compensator that incorporates
the idea of computed torque method is presented. Although the pure neural network approach
without knowledge about robot dynamics may be promising, it is important to note that this approach
will not be very practical because of the high dimensionality of input–output spaces. Bassi and
Bekey10 use the principle of functional decomposition to simplify robot dynamics learning. This
method includes a priori knowledge about robot dynamics which, instead of being specific knowl-
edge corresponding to a certain type of robot models, incorporates common invormation about
robot dynamics. In this way, the unknown input–output mapping is decomposed into simpler
functions that are easier to learn because of smaller domains. In Katić and Vukobratović,12 similar
ideas in the development of the fast learning algorithm were used with decomposition at the level
of internal robot coordinates, velocities, and accelerations.

The connectionist approach is very efficient in the case of robots with flexible links or for a flexible
materials handling system by a robotic manipulators where the parameters are not exactly known and
the learning capability is important to deal with such problems. Because of the complex nonlinear
dynamical model, the recurrent neural network is very suitable for compensating flexible effects.

With recent extensive research in the area of robot position/force control, a few connectionist
learning algorithms for constrained manipulation have been proposed. We can distinguish two
essential different approaches: one, whose aim is the transfer of human manipulation skills to robot
controllers, and the other, in which the manipulation robot is examined as an independent dynamic
system in which learning is achieved through repetition of the work task.

The principle of transferring human manipulation skill (Figure 24.7) has been developed in the
papers of Asada and co-workers.18 The approach is based on the acquisition of manipulation skills
and strategies from human experts and subsequent transfer of these skills to robot controllers. It is
essentially a playback approach, where the robot tries to accomplish the working task in the same
way as an experienced worker. Various methods and techniques have been evaluated for acquisition
and transfer of human skills to robot controllers.

This approach is very interesting and important, although there are some critical issues related
to the explicit mathematical description of human manipulation skill because of the presence of
subconscious knowledge and inconsistent, contradictory, and insufficient data. These data may
cause system instability and wrong behavior by the robotic system. As is known, dynamics of the
human arm and a robot arm are essentially different, and therefore it is not possible to apply human
skill to robot controllers in the same way. The sensor system for data acquisition of human skill
can be insufficient for extracting a complete set of information necessary for transfer to robot
controllers. Also, this method is inherently an offline learning method, whereas for robot contact
tasks online learning is a very important process because of the high level of robot interaction with
the environment and unpredictable situations that were not captured in the skill acquisition process.

The second group of learning methods, based on autonomous online learning procedures with
working task  repetition, have also been evaluated through several algorithms. The primary aim is
to build internal robot models with compensation of the system uncertainties or direct adjustment
of control signals or parameters (reinforcement learning). Using a combination of different intel-
ligent paradigms (fuzzy + neuro) Kiguchi and Fukuda25 proposed a special algorithm for approach,
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contact, and force control of robot manipulators in an unknown environment. In this case, the robot
manipulator controller, which approaches, contacts, and applies force to the environment, is
designed using fuzzy logic to realize human-like control and then modeled as a neural network to
adjust membership functions and rules to achieve the desired contact force control.

As another exposed problem in control robotic contact tasks, the connectionist approach is used
for dynamic environment identification. A new learning control concept based on neural network
classification of unknown dynamic environment models and neural network learning of robot
dynamic model has been proposed.13 The method classifies characteristics of environments by using
multilayer perceptrons based on the first neural network, and then determines the control parameters
for compliance control using the estimated characteristics. Simultaneously, using the second neural
network, compensation of robot dynamic model uncertainties is accomplished. The classification
capability of the neural classifier is realized by an efficient offline training process. It is important
that the pattern classification process can work in an online manner as a part of selected compliance
control algorithm.

The first objective is the application of connectionist structures to fast online learning of robotic
system uncertainties as a part of the stabilizing control algorithm mentioned previously. The role
of the connectionist structure has a broader sense, because its aim is to compensate possible
uncertainties and differences between real robot dynamics and assumed dynamics defined by the
user in the process of control synthesis. Hence, to achieve good tracking performance in the presence
of model uncertainties, a fixed non-recurrent multilayer perceptron is integrated into the non-
learning control law with the desired quality of transient processing for interaction force.

In this case, compensation by neural network is connected to the uncertainties of robot dynamic
model. But, the proposed learning control algorithm does not work in a satisfactory way if there
is no sufficiently accurate information about the type and parameters of the robot environment
model. Hence, to enhance connectionist learning of the general robot-environment model, a new
method is proposed whose main idea is using a neural network approach through an offline learning
process and online sufficiently exact classification of robot dynamic environment. The neural
network classifier based on a four-layer perceptron is chosen due to good generalization properties.
Its objective is to classify the model profile and parameters of environment in an online manner.
In the acquisition process, based on real-time realization of proposed contact control algorithms
and using previously chosen sets of different working environments and model profiles of working
environments, some force data from force sensors are measured, calculated, and stored as special
input patterns for training the neural network. On the other side, the acquisition process must be

FIGURE 24.7 Transfer of human skills to robot controllers by the neural network approach.
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accomplished using various robot environments, starting with the environment with a low level of
system characteristics (for example, with a low level of environment stiffness) and ending with an
environment with a high level of system characteristics (with high level of environment stiffness).
As another important characteristic in the acquisition process, different model profiles of the
environment are used based on additional damping and stiffness members that are added to the
basic general impedance model.

After that, during the extensive offline training process, the neural network receives a set of
input–output patterns, where the input variables form a previously collected set of force data. As
a desired output, the neural network has a value between 0 and a value defined by the environment
profile model (the whole range between 0 and 1) that exactly defines the type of training robot
environment and environment model. The aim of connectionist training is for the real output of
the neural network for given inputs to be exact or very close to the desired output value determined
for an appropriate training robot environment model.

After the offline training process with different working environments and different environment
model profiles, the neural classifier is included in the online version of the control algorithm to
produce some value at the network’s output between 0 and 1. In the case of an unknown environ-
ment, information from the neural classifier output can be utilized efficiently for calculating the
necessary environment parameters by linear interpolation procedures. Figure 24.8 shows the overall
structure of the proposed algorithm.

24.3.3 Sensor-Based Robot Learning

A completely different approach of connectionist learning uses sensory information for robot neural
control. Sensor-based control is a very efficient method in overcoming problems with robot model
and environment uncertainties, because sensor capabilities help in the adaptation proces without
explicit control intervention. It is adaptive sensor-motor coordination that uses various mappings
given by the robot sensor system. Particular attention has been paid to the problem of visuo-motor
coordination, in particular for eye–head and arm–eye systems. In general, in visuo-motor coordi-
nation by neural networks, visual images of the mechanical parts of the systems can be directly
related to posture signals. However, tactile-motor coordination differs significantly from visuo-
motor because the intrinsic dependency on the contacted surface. The direct association of tactile
sensations with positioning of the robot end-effector is not feasible in many cases, hence it is very

FIGURE 24.8 Scheme of the connectionist control law stabilizing interaction force.
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important to understand how a given contact condition will be modified by motor actions. The task
of the neural network in these cases is to estimate the direction of a feature-enhancing motor action
on the basis of modifications in the sensed tactile perception.

After many years of being thought impractical in robot control, it was demonstrated that CMAC
could be very useful in learning state-space dependent control responses.56 A typical demonstration
of CMAC application in robot control involves controlling an industrial robot using a video camera.
The robot’s task is to grasp an arbitrary object lying on a conveyor belt with a fixed orientation or
to avoid various obstacles in the workspace. In the learning phase, visual input signals about the
objects are processed and combined into a target map through modifiable weights that generate the
control signals for the robot’s motors. The errors between the actual motor signals and the motor
signals computed from the camera input are used to incrementally change the weights. Kuperstain33

has presented a similar approach using the principle of sensory-motor circular reaction
(Figure 24.9). This method relies on consistency between sensory and motor signals to achieve
unsupervised learning. This learning scheme requires only availability of the manipulator, but no
formal knowledge of robotic kinematics. Opposite to previously mentioned approaches for visuo-
motor coordination, Rucci and Dario34 experimentally verified autonomous learning of tactile-motor
coordination by a Gaussian network for a simple robotic system composed of a single finger
mounted on a robotic arm.

24.4 Fuzzy Logic Approach

24.4.1 Introduction

The basic idea of fuzzy control was conceived by L. Zadeh in his papers from 1968, 1972, and
1973.59,61,62 The heart of his idea is describing control strategy in linguistic terms. For instance, one
possible control strategy of a single-input, single-output system can be described by a set of control
rules:

If (error is positive and error change is positive), then 
    control change = negative
Else if (error is positive and error change is negative), then
    control change = zero
Else if (error is negative and error change is positive), then
    control change = zero
Else if (error is negative and error change is negative), then
    control change = positive

FIGURE 24.9 Sensory-motor circular reaction.
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Further refining of the strategy might take into account cases when, e.g., the error and error change
are small or big. Such a procedure could make it possible to describe the control strategy used,
e.g., by trained operators when controlling a system manually.

Statements in natural language are intrinsically imprecise due to the imprecise manner of human
reasoning. Development of techniques for modeling imprecise statements is one of the main issues
in implementation of automatic control systems based on using linguistic control rules. With fuzzy
controllers, modeling of linguistic control rules (as well as derivation of control action on the basis
of given set of rules and known state of the controlled system) is based on the theory of fuzzy sets
introduced by Zadeh in 1965.58

In 1974, Mamdani described the first application of fuzzy set theory to automatic control.30

However, almost 10 years passed before broader interest was reestablished for fuzzy logic and its
applications in automatic control. The number of reported fuzzy applications has been increasing
exponentially (Figure 24.10). Current applications based on fuzzy control appear in such diverse
areas as the automatic control of trains, road cars, cranes, lifts, nuclear plants, home appliances,
etc. Commercial applications in robotics still do not exist; however, numerous research efforts
promise that fuzzy robot control systems will be developed, notably in the fields of robotized part
processing, assembly, mobile robots, and robot vision systems.

Thanks to its ability to manipulate imprecise and incomplete data, fuzzy logic offers the possi-
bility of incorporating expertise into automatic control systems. Fuzzy logic already has proven
itself useful in cases where the process is too complex to be analyzed by conventional quantitative
techniques, or where the available information is qualitative, imprecise, or unreliable. Considering
that it is based on precise mathematical theory, fuzzy logic additionally offers the possibility of
integrating heuristic methods with conventional techniques for analysis and synthesis of automatic
control systems, thus facilitating further refinement of fuzzy control-based systems.

24.4.2 Mathematical Foundations

24.4.2.1 Fuzzy Sets

At the heart of fuzzy set theory is the notion of fuzzy sets that are used to model statements in
natural (or artificial) language. Fuzzy set is a generalization of classical (crisp) sets. The classical
set concept assumes that it is possible to divide particles of some universe into two parts: those
that are members of the given set, and those that are not. This partitioning process can be described
by means of a characteristic membership function. For a given universe of discourse X and a given
set A, membership function µA(⋅) assigns a value to each particle x ∈ X so that

FIGURE 24.10 Estimated number of commercial applications of fuzzy systems.
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With fuzzy sets, the set’s boundary is not strict between the members and nonmembers. This
softening of the boundary is defined mathematically using the membership degree function, which
assigns each particle a value that indicates the degree of membership in the given set (see
Figure 24.11). Accordingly, fuzzy set  in the universe of discourse X is defined by its degree of
membership function  of the form:

For each fuzzy set, its support can be defined. The support of fuzzy set  is an ordinary set A
that contains all elements from the universe X with nonzero membership degrees in :

The notion of support allows a formal definition of empty fuzzy sets. An empty fuzzy set is a fuzzy
set with empty support.

It is customary to represent fuzzy sets by fuzzy singletons. A fuzzy singleton is a fuzzy set for
which its support is a single particle x from the universe X. If fuzzy set Ã has a finite support
supp(Ã) = {x1, x2, …, xn} with degrees of membership µÃ (xi), i = 1, 2, …, n, such a fuzzy set is
conveniently written as:

Here, the plus sign indicates that pairs µÃ(xi)/xi collectively form the definition of fuzzy set Ã. If
universe X is an interval of real numbers, then the following notation for fuzzy set Ã in X is
customary:

The notions of fuzzy subsets and equality between fuzzy sets are also defined in terms of
membership degree functions. Fuzzy set Ã is said to be a subset of  if all particles x ∈ X have
degrees of membership to Ã lower or equal to their degrees of membership to :

Fuzzy sets are equal if their membership functions are equal for all elements in the universe of
discourse:

FIGURE 24.11 Membership functions of conventional and fuzzy sets.
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An important class of fuzzy sets is normalized fuzzy sets. A fuzzy set Ã is said to be normalized
if its height h(Ã), defined as the largest degree of membership attained by elements in its support,
is equal to 1:

The value m ∈ X for which µÃ(m) = h(Ã) is called the modal value of the fuzzy set.
Fuzzy set Ã in Euclidean space Rn is convex if, for any vectors x, y ∈ Rn, the following is valid:

Fuzzy sets that are normalized, convex, and, additionally, have a piecewise continuous member-
ship degree function, are denoted as fuzzy intervals. A special class of fuzzy intervals is fuzzy
numbers. A fuzzy number is a fuzzy interval with an unique modal value. The concept of fuzzy
numbers is based on fuzzy artihmetic that may be considered a generalization of classical arithmetic.
Examples of membership functions of normalized, convex fuzzy sets, and fuzzy numbers are shown
in Figure 24.12.

24.4.2.2 Operations on Fuzzy Sets

The basic principle for generalization of classical mathematical concepts to the field of fuzzy sets
is known as the principle of extension.63 Formally, given a function f: X → Y, mapping elements
of ordinal set X into elements of set Y, and an arbitrary fuzzy set , e.g.,

Ã = µ 1/x1 + µ 2/x2 + ⋅⋅⋅ + µ n/xn

the principle of extension states that the following relation has to be preserved:

In other words, operations on fuzzy sets should preserve important properties of operations on
classical sets. Unfortunately, it turns out that it is not possible to define of basic fuzzy set operations
that would preserve all the important properties of the corresponding operations on classical sets.
For example, it is shown that arbitrary fuzzy complement, union, and intersection operations
satisfying the law of contradiction and law of excluded middle are not distributive. Therefore, the

FIGURE 24.12 Examples of fuzzy sets.
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choice of basic fuzzy set operations has to be made by considering the context in which these
operations will be carried out. The most often used set of basic standard operations of fuzzy set
theory is (see Figure 24.13):

Fuzzy set theory based on such defined operators is usually referred to as possibility theory.
However, in some situations, different definitions of basic fuzzy set operators are preferable. For
example, a union  intuitively is a disjunction of the concepts represented by  and 
Additionally, the notion of union normally implies a certain level of interchangeability between
the concepts represented by its arguments. On the other hand, a standard union max operator is
rigid in the sense that it does not assume such an interchangeability. If the union were specified
by the function

fu: [0, 1] × [0, 1] → [0, 1]

that assigns a value  to given pair of membership degrees  and , then
the intuitive meaning of the union implies the following relation:

It is evident that standard union operation, defined as , yields the lowest
possible degree of membership. For this reason, in some cases, alternative formulations are used
in place of the max operator. All potential formulations fu(⋅) are required to satisfy the minimum
axiomatic conditions:

U1. Boundary conditions: fu (0, 0) = 0 and fu (0, 1) = fu (1, 0) = fu (1, 1) = 1
U2. Commutativity: fu (x, y) = fu (y, x)
U3. Monotony: if x ≤ x′ and y ≤ y′, then fu (x, y) ≤ fu (x′, y′)
U4. Associativity: fu (fu (x, y), z) = fu (x, fu (y, z))

The functions satisfying these axioms are called triangular conorms (t-conorms). Evidently, the
standard union operation is a t-conorm. Other t-conorms are proposed as well, such as algebraic
sum, bounded sum, etc.

Fuzzy intersection  intuitively denotes a conjunction of concepts represented by  and 
As in the case of union, the intersection operation can be specified using the function:

fi: [0, 1] × [0, 1] → [0, 1]

FIGURE 24.13 Standard operations on fuzzy sets.
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f x xu A B
[ ( ), ( )]˜ ˜µ µ µ ˜ ( )

A
x µ ˜ ( )

B
x

f x x x xu A B A B
[ ( ), ( )] max[ ( ), ( )]˜ ˜ ˜ ˜µ µ µ µ≥

max[ ( ), ( )]˜ ˜µ µ
A B

x x

˜ ˜A B∩ Ã ˜.B
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The minimum axiomatic skeleton that functions fi(⋅) have to satisfy to qualify as candidates for
defining fuzzy intersection consists of conditions:

I1. Boundary conditions: fi (1, 1) = 1 and fi (0, 0) = fi (0, 1) = fi (1, 0) = 0
I2. Commutativity: fi (x, y) = fi (y, x)
I3. Monotony: if x ≤ x′ and y ≤ y′, then fi (x, y) ≤ fi(x′, y′)
I4. Associativity: fi (fi (x, y), z) = fi (x, fi (y, z))

The functions satisfying axioms I1–I3 are called triangular norms (t-norms). Obviously, the
standard min operation is a t-norm.

Analogous to the case of the union, intersection of fuzzy sets normally implies a certain require-
ment level for the simultaneous satisfaction of concepts represented by its arguments. On the other
hand, the standard min operation is rigid in the sense that it does not account for the benefits of
simultaneous memberships. Hence, alternative t-norms are proposed in which different intensities
of intersections are achieved: algebraic product, bounded product, etc. Standard min operation is
the upper bound of the possible intersection operations (the weakest intersection).

24.4.2.3 Fuzzy Relations

Fuzzy relations are generalizations of the classical concept of relations among elements of two or
more sets. Additionally, fuzzy relations allow the specification of different levels of strength of
association among individual elements. The levels of association are represented by degrees of
membership to the fuzzy relations, in the same manner as the degree of membership to a fuzzy set
is represented.

Formally, a fuzzy relation among elements of ordinary sets X1, X2, …, Xn is a fuzzy subset
 of Cartesian product X1 × X2 × … × Xn and it is defined by the membership

degree function:

Thus, tuples x = (x1, x2, …, xn) ∈ X1 × X2 × … × Xn may have different degrees of membership
 to the fuzzy relation.

When the sets X1, X2, …, Xn are finite, fuzzy relation  is suitably represented by
an n-dimensional membership matrix, whose elements show the degree to which the individual
tuples belong to a given fuzzy relation. For instance, binary fuzzy relation  between sets
X = {x1, …, xn} and Y = {y1,…, ym} is conveniently represented by the matrix:

For a given family of sets  defined in the universes X1, X2, ⋅⋅⋅, Xn, the Cartesian
product of fuzzy sets:

is a fuzzy set in the universe of discourse X1 × X2 × … × Xn. Consequently, the Cartesian product
is an n-ary fuzzy relation with the degree of membership function defined by:
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for all x1 ∈ X1, x2 ∈ X2, …, xn ∈ Xn, where the sign ∗ denotes one of the triangular norms (i.e., the
intersection operation).

Among the operations over fuzzy relations, compositions of binary relations are of special
significance. For ordinary binary relations P(X, Y) and Q(Y, Z), defined in the common set Y, the
composition of P and Q:

R(X, Z) = P(X, Y) Q(Y, Z)

is defined as a subset R ⊆ X × Z such that

(x, z) ∈ R iff there exists y ∈ Y for which (x, y) ∈ P and (x, z) ∈ Q

The concept of composition is extended to fuzzy relations in a number of ways aimed at preserving
important properties of corresponding compositions of classical relations. The most important types
of compositions of binary fuzzy relations are

• Max–min composition. Denoted by  this operation is defined by

Thus, the strength of the relation between elements x and z is equal to the strength of the
strongest chain between these elements, whereas the strength of each chain x–y–z is equal
to the strength of its weakest link.

• Max–product composition. The composition is denoted by  and defined by:

The max–min and max–product compositions may be regarded as specializations of the more
general sup-star composition, denoted by and defined by

where the sign ∗ represents any triangular norm, and the sup operator denotes supremum (the lowest
upper bound).

Compositions of binary relations in finite sets may be efficiently realized using membership
matrices. For example, the composition  can be calculated as a matrix product:

where multiplication is replaced by the min, and addition by the max operator.

24.4.2.4 Fuzzy Logic

Fuzzy logic is a discipline comprising formal principles of approximate reasoning.64 Its main issue
is modeling of imprecise modes of human reasoning in conditions characterized by unreliability
and imprecision, whereby the theory of fuzzy sets is used as a basic methodology.

Fuzzy logic is an extension to classical logic, in which the basic objects are logical propositions
that may take one of the possible values of truth: true or false, i.e., 1 or 0. Contrary to classical
formal systems, fuzzy logic allows evaluation of the truth of a proposition as, e.g., a real number
in interval [0,1]. The basis of fuzzy logic is the theory of fuzzy sets. For example, the characterization
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of fuzzy set Ã with membership function µÃ(x), x ∈ X, can be interpreted as the truth value of the
proposition:

x is element of Ã

To enable work with imprecise propositions, fuzzy logic permits use of:

• Fuzzy predicates. Truth values of an imprecise predicate P(x) (e.g., x is small, big, etc.) can
be described for any x ∈ X by the fuzzy set with membership function µP(x), determined by
the predicate P(⋅).

• Fuzzy truth values. Fuzzy sets, defined on the interval [0, 1], can be used to describe different
levels of truth (e.g., fairly true, completely false, etc.).

• Fuzzy quantifiers. In addition to the usual quantifiers from classical logic (∀, ∃), imprecise
statements may contain imprecise quantifiers (e.g., sometimes, almost always) represented
by fuzzy numbers.

• Fuzzy modifiers. Different forms of fuzzy modifiers (probably, fairly, etc.) can be described
by utilizing special operations on fuzzy sets representing the modified propositions. 

The central problem of quantitative fuzzy semantics is calculating the meaning of linguistic
variables, i.e., the variables whose values are sentences in a specific (natural or artificial) language.60

The linguistic variable can be regarded as a variable whose value is a fuzzy number (the meaning
of the variable) or as a variable whose values are linguistically defined (the label of the variable).63

Generally, the label of a linguistic variable is obtained by concatenating the terms of the language
according to some rules. In simple cases, these terms can be divided into four categories:

1. Primary terms that represent labels of specific fuzzy sets
2. Negation not and connectives or and and
3. Modifiers that modify the basic concept to which they are applied (e.g., very, extremely, etc.)
4. Markers, such as parentheses

Negation not and connectives or and and may be considered labels of the corresponding operations
on fuzzy sets:

• Complement  that represents the fuzzy concept “not ”

• Union  that represents the fuzzy concept “  or ”

• Intersection  that represents the fuzzy concept “  and ”

Linguistic modifiers can be expressed by specific operations on the fuzzy set Ã describing the
basic concept, e.g.,

• Exponent Ãα, defined as

• Concentration, defined as

The operation of concentration may be interpreted as “very Ã” and its effect is a large reduction
of the degrees of membership of those values of x that already have a small degree of membership

 to the basic concepts Ã, with an additional small reduction for those x with high membership
.

Ã Ã
˜ ˜A B∪ Ã B̃

˜ ˜A B∩ Ã B̃
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• Dilatation, defined by

The operation of dilatation can be described as “more or less Ã” and its effect is opposite to that
of concentration.

• Contrast intensification int(Ã), defined as

This operation has the consequence of increasing the values  that are above the crossover
point 0.5 and the reduction of values below this point.

Examples of linguistic modifiers are illustrated in Figure 24.14.
Among various forms of fuzzy propositions, fuzzy implications are of special importance. Fuzzy

implication is a statement of the form:

or, equivalently,

if Ã(x) than (y)

where x ∈ X, y ∈ Y are linguistic variables and Ã(⋅)  are fuzzy predicates in universes of
discourse X, Y, respectively. Essentially, such a statement describes the fuzzy relation:

between the two fuzzy sets, i.e., between the equivalent fuzzy propositions  and .
Fuzzy implication is important because of its role in automatic inferencing. The two basic fuzzy

inference rules that are based on fuzzy implication are

• Generalized modus ponens: 

• Generalized modus tollens: 

The generalized modus ponens is closely related to the mechanism of forward inferencing (data-
driven inference) and it reduces to the classical modus ponens when  and  Analo-
gously, the generalized modus tollens is closely related to the mechanism of backward inferencing

(goal-driven inference) and it reduces to the classical modus tollens when  and  

FIGURE 24.14 Examples of linguistic modifiers.
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A basic technique that lies at the heart of most implementations of automatic fuzzy inference is
the compositional rule of inference proposed by Zadeh.62 According to this rule, binary fuzzy
relation  from X to Y and fuzzy set  induce the fuzzy set  determined by the sup-star
composition

in which  plays the role of unary fuzzy relation. When setting  and 
in the compositional rule, the rule becomes an implementation of generalized modus ponens:

If  are nonfuzzy and  the compositional rule of inference becomes

Thus, the compositional rule can be regarded as an approximate extension, i.e., a fuzzy generali-
zation of modus ponens: The more different  is from  the less sharply defined is  

Because of the significance of fuzzy implication, a number of distinct fuzzy implication functions
have been proposed for its implementation. The proposed functions can be divided into five
families:14

1. Material implication:  

2. Implication in propositional calculus:  

3. Extended implication in propositional calculus:  

4. Generalization of modus ponens:  

5. Generalization of modus tollens:  

Several authors have analyzed axiomatic requirements and criteria for selection of appropriate
functions for implementation of fuzzy implication.4,15,28 One of the widely accepted definitions is
the standard fuzzy implication, an implementation of generalized modus ponens in which the
standard union and intersection operators are used:

24.4.3 Fuzzy Controller

Fuzzy control approaches the control problem in a radically different way compared to the tradi-
tional model-based techniques. Instead of precise mathematical models, fuzzy control uses an
imprecise and incomplete description of the process and/or the way the system is controlled by
human operators, where the theory of fuzzy sets is used as a principle tool.

A fuzzy controller consists of four basic components (see Figure 24.15): condition (fuzzification)
interface, knowledge base, inference mechanism, and action interface.

The block denoted as the condition interface performs measurement of input (state) variables:
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of the controlled process and translates them into fuzzy linguistic terms X1, X2, …, Xn that are
represented by fuzzy sets  in appropriate universes of discourse U1,U2, …, Un, respec-
tively. The obtained fuzzy values constitute the fuzzy state of the process:

in the state space U = U1 × U2 × … × Un. The fuzzy state variables are further used in evaluation
of fuzzy control rules.

The knowledge base consists of control rules and a fuzzy set definition base. The definition base
provides the definitions necessary to characterize fuzzy control rules and manipulation of fuzzy
data. The rule base consists of heuristic fuzzy control rules that describe control goals and policy.
A fuzzy control rule is a fuzzy conditional statement (fuzzy implication) in which the antecedent
is a condition and the consequent is a control action. Thus, the rule base can be represented as:

R1: if X1 is A11 and … and Xn is A1n, then Y1 = B11 and … and Ym = B1m

R2: if X1 is A21 and … and Xn is A2n, then Y1 = B21 and … Ym = B2m

 

Rr: if X1 is Ar1 and … and Xn is Arn, then Y1 = Br1 and … and Ym = Brm

where:

X1, X2, …, Xn = labels of fuzzy state variables  in universes U1, U2, …,Un

Y1, Y2, …, Ym = labels of fuzzy actions  in universes V1, V2, …, Vm

Aki and Bkj = labels of fixed linguistic values represented by fuzzy sets  

Rules Rk, k = 1, 2, …, r are also mutually interconnected via implicit connectives. Each control
rule is implemented by the fuzzy relation  where U = U1 × U2 × … × Um and V = V1

× V2 × … × Vm. The rule base is an aggregate of individual rules. By integration of particular
relations  the aggregate relation of the whole rule base is obtained as:

The block designated as the inference mechanism is responsible for evaluation of control rules.
Evaluation is commonly carried out using the sup-star compositional rule:62

The result is the fuzzy control action  in universe V of possible control actions.
Within the action interface, the fuzzy action  is converted into defuzzified action y = (y1, y2, …, ym).

FIGURE 24.15 Components of fuzzy controller.
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24.4.3.1 Condition Interface

The task of the condition interface is (1) to perform scale mapping, which transfers the range of
values of input variables into corresponding universes of discourse, and (2) to perform fuzzification,
which converts crisp inputs into fuzzy sets.

The most frequent fuzzification strategy consists of transforming the measured value x into a
fuzzy singleton  Thus, input x is interpreted as a fuzzy set  with the membership function equals
zero in all points u ∈ U except for the point u0, where  

24.4.3.2 Fuzzy Set Definition Base

The fuzzy set definition base contains definitions of fuzzy sets  and  (i = 1, 2, …, n, j = 1, 2,
…, m. k = 1, 2, …, r) that correspond to linguistic labels Aki and Bkj appearing in the control rules.
These fuzzy sets are frequently designated as primary fuzzy sets.

The universes of discourse for input and output control signals can be discrete or continuous.
To attain a more efficient manipulation with fuzzy sets, two basic transformations are commonly
applied to the input/output spaces:

• Normalization, by which the universe of discourse U is transformed into the normalized
closed interval UN = [–1, +1]. The transformation function fN (⋅) may be linear or nonlinear
and its synthesis assumes a priori knowledge on the possible range U = [umin, umax] of the
signal. For the case of linear mapping,

fN (u) = [(u – umax) + (u – umin)]/(umax – umin)

By choosing appropriate nonlinear transformation, a uniform distribution of symmetric and
mutually equal primary sets may be achieved.

• Discretization (quantization), by which the continuous universe U or UN is partitioned into
a finite number of segments:

• specified by quantization levels  Each segment  i = 1, 2, …,
q is treated as a generic element representing all elements  In this manner, fuzzy sets
can now be defined by assigning degrees of membership to each generic element of the
universe  

Quantization may also be linear or nonlinear. The number of quantization levels should be
sufficiently large to ensure adequate approximation and yet be small enough to save memory
space. In the majority of applications, the number of quantization levels is 16 to 32.

Primary fuzzy sets are usually represented by linquistic labels such as: NB, negative big; NM,
negative medium; NS, negative small; ZE, zero; PS, positive small; PM, positive medium; and PB,
positive big. The set of different labels:

is called fuzzy input space of the i-th input variable, i = 1, 2, …, n. Analogously, the set of different
labels:

˜.x x̃
µ ˜ ( ) .

x
u0 1=
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is called fuzzy control space of j-th control variable, j = 1, 2, …, m. The number of different labels
in fuzzy input space determines the number of possible control rules. Finding the optimal fuzzy
partition of the input space is a difficult task and is usually performed in a heuristic way.

Depending on whether the underlying universe of discourse is continuous or discrete, primary
fuzzy sets are specified using a functional or numerical definition. For the case of continuous
universe, commonly applied functional forms of membership functions are

• Triangular functions:  

• Bell-shaped functions:  

An example of triangular primary fuzzy sets is given in Figure 24.16. If the universe of discourse
is discrete, a fuzzy set is represented as a vector whose elements are values of the membership degree.

24.4.3.3 Control Rules

A rule Rk in the rule base typically takes the form of a state evaluation fuzzy control rule:

Rk: if (X1 is Ak1 and … and Xn is Akn), then Y = Bk

Linguistic variables appearing on the left side of the implication are typically the process state
error (i.e., deviation from desired state), and error change (i.e., time derivative of the error). The
variable on the right side is usually the control output or a change of the control output.

A more general form is the functional control rule, where premises and consequences are
specified as (logical) functions:

Rk: if fk (X1 is Ak1, , Xn is Akn), then Y = gk (X1, X2,  Xn)

A popular form of functional rules is the Sugeno-type rules,44 where the antecendent propositions
are connected by fuzzy conjunction, and the consequent is a linear function of input variables:

Rk : if X1 is Ak1 and  and Xn is Akn, then yk = gk0 + gk1 × 1 +  + gkn xn

The principal questions about implementation of fuzzy controllers are connected to the derivation
and validation of control rules. Keeping in mind that fuzzy control is primarily efficient in cases
when only qualitative and incomplete information is available, the rules are often derived in a
heuristic way. Use of expert knowledge and imitation of procedures employed by trained operators
are commonly used. Adjustments of control parameters to improve system performances are often
made using ad hoc procedures that usually reduce to trial-and-error.

Intensive investigations were conducted on development of systematic methods of deriving fuzzy
control rules. Most of them use notion of the fuzzy process model, i.e., the linguistic description
of dynamic characteristics of controlled process.45,57 The fuzzy model approaches identification of

FIGURE 24.16 Primary fuzzy sets.
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linguistic structure and model parameters in a systematic manner. Based on the known fuzzy model,
control rules can be generated for attaining optimal system behavior.

An alternative solution lies in adding fuzzy controller learning capabilities, i.e., facilities to adapt
general control rules to an actual situation. In principle, a fuzzy controller with learning capabilities
has a hierarchical structure consisting of two rule bases: a general rule base and base of meta-rules.
The meta-rules exhibit human-like learning ability to create and modify the general rules based on
the observed and desired performance characteristics of the system. The first such system with
learning capabilities, a self-organizing controller, was described by Procyk and Mamdani.37

24.4.3.4 Inference Mechanism

Consider the rule base:

R1: if X1 is A11 and  and Xn is A1n, then Y = B1

R2: if X1 is A21 and  and Xn is A2n, then Y = B2

Rr: if X1 is Ar1 and  and Xn is Arn, then Y = Br

The antecedent of each rule Rk, k = 1, 2, , r is interpreted as a fuzzy set:

in the product space U = U1 × U2 ×  × Un, with the membership function  given for all
 by:

where fi(·) denotes any t-norm (intersection) function, such as min or algebraic product. Thus, the
rule base can be represented in the form:

where the antecendents are fuzzy sets in the universe U, and the consequents are fuzzy sets in the
universe V.

If the rule base is complete (i.e., it contains all possible fuzzy conditions and, additionally, for
every input u there exists a dominant rule Rk with applicability degree  higher than some
level, say, 0.5), then such a base can be interpreted as a sequence of fuzzy conditional statements:
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ãk ⋅( )

u U∈

  
µ µ µ˜ ˜ ˜ ˜ ˜( ) ( , , , ) ( ( ), ( ), , ( ))

a a a a ak k k k kn
u u u u f u u u u un i n= =1 2 1 21 2

K K

  

R b

R b

R br r

1 1

2 2

: ˜ , ˜

: ˜ , ˜

: ˜ , ˜

if  

if  

if  

1

2

r

a

a

a

then

then

then

M

µ ˜ ( )
a

u
k

  

if then 

else if then 

else if then 

1

2

˜ , ˜

˜ , ˜

˜ , ˜

a

 a

a

b

b

br r

1

2

M

8596Ch24Frame  Page 669  Tuesday, November 6, 2001  9:43 PM

© 2002 by CRC Press LLC



It is natural to interpret the fuzzy conditional statements as Cartesian products, and connectives
between the conditional statements as union. Thus, the relation represented by the rule base is
naturally implemented as:

Taking into account computational aspects, Cartesian products  are frequently
implemented by using min or algebraic product functions, yielding two commonly used operation
rules:

• Mamdani’s mini-operation rule: ;

• Larsen’s product operation rule: .

Detailed analysis of the influence of different fuzzy implication functions and union and intersection
operators on control quality can be found in, e.g., Lee,28 Mizumoto,32 and Stachowicz and Koshanska.42

The inference mechanism is based on the sup-star compositional rule of inference:

The rule is usually implemented using sup-min or sup-product compositional operator. If this is
the case, and if the union is implemented using the max function, fuzzy control action  can be
expressed as:

or, in terms of the degree of membership function, as:

where  is a local fuzzy control action inferred from the kth rule. In terms of the degree
of membership function, the local fuzzy control action is determined by:

If input  is a fuzzy singleton with the membership function equaling zero at all points except at
the point u0 at which , then both versions of the compositional rule of inference reduce to:

In this way, local fuzzy action is determined by the membership function:
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The quantity  is referred to as the firing strength of the kth rule and represents a measure
of the contribution of the kth rule to integral fuzzy control action. It is computed by applying the
corresponding operation rule:

The mechanism of inference in these two methods is illustrated in Figure 24.17. The first method
has the advantage of enhancing the contribution of the dominant rule, so that it is widely used in
fuzzy applications. On the other hand, the second method has an advantage of preserving the
contribution of all rules to the control action.

The obtained fuzzy control action  (or a set of local control actions ) is
transferred to the action, i.e., defuzzification interface, where the actual crisp control signal is
generated.

24.4.3.5 Action Interface

Degree of membership function of fuzzy control action can be interpreted as a distribution of
possibility  to achieve a  control goal by the signal v. Action interface’s purpose is to generate
a control signal that will best represent the possibility distribution of inferred fuzzy action. Fre-
quently used strategies employed by the action interface are

• The mean-of-maximum method. With this strategy, control action is derived as a mean value
of all points v at which the membership function of the fuzzy control reaches the global
maximum  In case of a discrete universe  the control y
is computed as:

where L is a set of all indices for which the grade membership function reaches maximum,
i.e., .

FIGURE 24.17 Operational rules.
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• The center-of-mass method. With this method, control is generated as the center of mass of
the possibility distribution of fuzzy control. In case of the discrete universe,

Analytical indices that could serve as guides for selecting the preferred method are not known.
However, experiments conducted by several authors, e.g., Mandič et al.31 have shown that the mean-
of-maximum method yields a better transient performance while the center-of-mass method yields
a better steady-state performance.

A slightly different scheme is employed with Sugeno-type rules, where fuzzy logic is employed
only to describe conditions for the application of the rule whereas the control actions are fuzzy
singletons, i.e., the control signals in classical sense:

Rk: if X1 is Ak1 and … and Xn is Akn then yk = gk0 

Here, it is natural to employ the firing strengths  of the rules to directly determine the
crisp control signal y. A standard technique is to generate the aggregate signal as a weighted average
of local controls, where the firing strengths are used as weighting factors:

24.4.4 Direct Applications

Frequently used control rules in fuzzy controllers are of the type:

Rk: if (E is Ak and ∆E is Bk) then U = Ck

where E represents value of error e, ∆E represents error change ∆e between successive operation
cycles of the controller, and U represents fuzzy control action that is transferred to the action
interface which in turn generates control signal u. For the operation of such a controller of special
importance are normalizing gains that are effectively applied within normalization that takes place
during conversion of actual signal values and their fuzzy representations. Normalized values of the
signals can be represented as:
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where Emax , ∆Emax , Umax are maximum values of the signals,  are corresponding normal-
ized values, and GE, G∆E, GU denote normalizing gains. If the operation of the fuzzy controller is
regarded as nonlinear mapping from e and ∆e to u, e.g.,

u = GU · f (GE · e, G∆E · ∆e)

then it is obvious that fuzzy controller is actually a nonlinear PD controller. Conversely, the
conventional PD controller can be considered as a special case of the fuzzy PD controller for which
the consequent of the rule is

u = Kpe + Kd∆e

Analogously, a fuzzy controller with control rules of the type:

Rk: if (E is Ak and ∆E is Bk) then ∆U = Ck

where ∆U represents change in control output, is actually a nonlinear PI controller. This analogy
with conventional controllers is often employed in synthesis and adjustments of fuzzy control.

The first application of fuzzy control to robotic manipulators was described by Mandič,  Scharf,
and Mamdani.31 In their 1985 paper, these authors described a series of experiments with a two-DOF
robot controlled by two independent self-organizing controllers. Both controllers are of the same
structure (see Figure 24.18) that consists of two levels. The lower level is a usual fuzzy controller
with control rules, whereas the upper level is a system that realizes the mechanism of automatic
learning, i.e., the generation and modification of the rules at the lower level. Control rules employed
at the lower level were of the type:

Rk: if (E is Ak and ∆E is Bk) then U = Ck

where E represents joint position error e = q – q0, ∆E represents error change, and U represents
control action. The upper level is responsible for evaluating controller performance and modifying

FIGURE 24.18 Self-organizing controller.
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the control rule base. Evaluation of performance is achieved using a production system whose
structure is identical to the basic fuzzy controller. Performance is evaluated using a local criterion
that roughly expresses deviation P between the actual and desired system response. Evaluation
criteria are expressed using a set of meta-rules of the form:

Πk: if (E is VEk and ∆E is V∆Ek), then P = VPk

In these rules, parameters of the primary fuzzy set VPk = zero define a tolerance range for system
response, whereas the values different from zero imply the desired degree of correction. Remarkably,
such defined rules depend to a very small extent on the controlled process and really express the
tolerable errors and degree of acceptability of the errors. If the base of meta-rules is represented
by fuzzy relation Π, then the output of the evaluator is a nonlinear function:

p = π(e, ∆e)

If the precise model of the controlled system were available, then a needed correction in control
∆u in principle could be calculated from the known index p. Because the use of the model is always
accompanied by inaccuracies, the self-organizing controller instead performs a modification of the
control rules that is based on simplified assumptions that (1) the current system performance index
p(t) is a consequence of control u(t – nT) generated n operation cycles prior the current time instant
t, and (2) the necessary correction in control ∆u(t –nT) is proportional to p(t):

r(t) = ∆u(t – nT) = λ · p(t)

In other words, it is accepted that corrections in control are not 100% accurate and that the learning
process is slower.

Modifications in the rule base are achieved using fuzzy set operations. Namely, the rule base at
the time instant t can be represented as union:

If the function transforming value x into fuzzy singleton  is denoted by f{·}, then the
control, generated at the time instant t – nT may be regarded as a value that corresponds to the
fuzzy implication:

whereas the desired control at the current time instant is regarded as a value corresponding to the
implication:

Now, the problem of modifying control rules can be expressed as a problem of substituting
implication  with the implication . One of the ways to achieve it is to describe the
substitution with the expression:
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or, equivalently:

Direct application of this formula would lead to exponential growth of the number of rules.
Therefore, an approximate method is used where only a single rule is modified at a time. The
modified rule is the dominant rule, i.e., the rule  for which the heights of inter-
sections  are at least equal to 0.5. Once the dominant
rule is identified, its old fuzzy action  is replaced by the action fU{u(t – nT) + λ · p(t)}.

In experiments by Mandič, Scharf, and Mamdani, 31 it was demonstrated on a real robot that a
self-organizing controller was able, after only a few adaptation cycles, to attain steady performance
that was completely comparable to that of a conventional PID controller. Tanscheit and Scharf,46

who described several experiments with self-organizing controllers applied to control of a second-
order linear system that represented the transfer function of a DC motor with variable load (the
variable load was represented by the variable moment of inertia) arrived at similar results.

These and other works, in which direct control of manipulation robots by fuzzy controllers was
tried, emphasized two main problems. The first is manifested by the lack of analytical tools for
control synthesis, i.e., the selection of parameters of fuzzy controllers (or initial values of the
parameters in cases of self-organizing controllers). Second, ordinary fuzzy controllers have attained
performances similar to, or slightly better than simple PID schemes. Therefore, it may be expected
that direct application of fuzzy controllers will not yield satisfactory performance in more complex
robotic tasks, such as tracking fast trajectories. The appearance of these problems can be partially
explained by the fact that the early works primarily concentrated on demonstrating the ability of
fuzzy logic-based methods to effectively master the nonlinear control problems without need for
exact mathematical modeling of the controlled system. For this reason, the role of a priori available
mathematical knowledge (in situations where the system dynamics is deterministic) as well as the
established model-based control techniques was somewhat overshadowed.

24.4.5 Hybridization with Model-Based Control

The problem of merging fuzzy logic-based control with analytic methodologies to exploit advan-
tages of both approaches in real-time robot control was addressed by several authors. Lim and
Hiyama29 have proposed a decentralized control strategy that incorporates a PI controller and a
simple fuzzy logic controller. In their approach, the PI controller was used to enhance transient
response and steady-state accuracy, whereas fuzzy control was to enhance damping of the overall
system. A tighter connection between fuzzy and standard control methods was proposed by Tzaf-
estas and Papanikolopoulos,50 who suggested employing a two-level hierarchy in which a fuzzy
logic-based expert system is used for fine tuning low-level PID control. A similar approach was
applied to robot control by Popović and Shekhawat.36 However, the two-level control hierarchy by
itself does not actually solve the problem of weak performance in situations characterized by quickly
varying robot dynamics. In such cases, knowledge of readily available mathematical models of
robot dynamics cannot be ignored. Therefore, fuzzy logic-based control should not be viewed as
a pure alternative to model-based robot control. Instead, a combined approach is preferred, and it
may yield superior control schemes over both simple model-based or fuzzy logic-based approaches.

The general idea behind the hybrid approach is utilization of a satisfactory approximation of the
model of robot dynamics to decrease dynamic coupling between robot joints and then engage the
fuzzy logic-based heuristics as a effective tool for creating a nonlinear performance-driven PID
control to handle the effects uncovered by the approximate model. A similar concept was formulated
by de Silva and MacFarlane,8 who proposed a three-level hierarchy for robot control. The proposed
hierarchy consists of:
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1. Conventional robot controller, i.e., a set of PID controllers closed around a fast decoupling
controller. The important role of this controller is to assure the decoupling and linearization
needed to efficiently apply expert knowledge for tuning the PID controllers (in an idealized
case, every joint subsystem would behave as an independent oscillator with PID control).

2. Intelligent pre-processor, i.e., a set of knowledge-based observers. Each observer is imple-
mented as a fuzzy system and its outputs are the attributes of response at a corresponding
joint (e.g., accuracy, oscillations, error convergence, divergence, and steady-state error).

3. Fuzzy tuner, i.e., a fuzzy controller that is used for tuning the gains of the PID controllers
at the lowest level.

de Silva and MacFarlane8 have tested their approach by simulation of a two-link manipulator
with an assumption of idealized effectiveness of the low-level global nonlinear feedback. Therefore,
robot dynamics was approximated in their work by a set of joint subsystems modelled as second-
order systems with unknown acceleration-type disturbances.

The idea of a hybrid approach to robot control was elaborated in detail by Vukobratović and
Karan,52,53 who have employed fuzzy logic to express control policy and have determined analyt-
ically conditions on values of fuzzy control parameters that assure stability of a closed-loop robot
control system. The authors have analyzed a hybrid design that is an extension to decentralized
control strategy. The proposed controller consists of a set of subsystems closed around individual
robot joints where each of the subsystems comprises two components: conventional model-based
controller and fuzzy logic-based tuner (see Figure 24.19). Inputs to ith joint subsystem, ,
where n is the number of actuated joints, are nominal control signal u0i, joint position error ,
joint velocity error , and integral error . In cases where a highly precise tracking of fast
trajectory is necessary, an optional global feedback loop (full dynamic compensation) can be added.
Global feedback is generated on the basis of computed or measured deviation of dynamic torque
∆τi acting at the joint and is synthesized to assure practical system stability.54 A further refinement
introduces the upper level that tunes the gains of the PID controllers. The tuner is designed as a
fuzzy controller that monitors joint response characteristics and modifies the gains to provide better
responses for large deviations of monitored quantities. Although its general structure permits
construction of sophisticated control rules for tuning the gains, Vukobratović and Karan have
considered a simple decentralized scheme consisting of independent joint servo tuners operating
on the basis of observed joint position error ∆q, velocity error , and integral error . A
rather simple heuristics for synthesizing gain-tuning rules was used:

1. If the observed errors are large and do not show a significant tendency to decrease, the
proportional gain is enlarged to speed-up error convergence.

2. When the errors are small, the proportional gain is decreased to prevent resonance oscillations
and attenuate undesired noise effects.

FIGURE 24.19 Hybrid control scheme.
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3. If errors are large, but the error convergence is satisfactory, the proportional gain is gradually
decreased to the appropriate value for small-error conditions.

4. The values of derivative and integral gains are changed simultaneously with the changes in
proportional gain so that the stability of the whole system is preserved. The actual values
are derived from stability analysis of the closed-loop system. Importantly, the readily avail-
able stability conditions for a fixed-gain controller were reused to determine the conditions
on parameters of nonlinear fuzzy tuners that are sufficient for overall system stability.

In spite of their simplicity, the rules resulted in significant improvements compared to those of
the fixed-gain model-based controller. Simulation experiments on a real-scale six-DOF industrial
robot have shown that the resulting variable-gain controllers in many respects outperform constant-
gain schemes. The most obvious advantage was the improvement in accuracy demonstrated in both
positioning and trajectory tracking tasks. An important feature is that the accuracy improvement
was not accompanied by degradation in other performance characteristics, such as energy con-
sumption and maximum developed torques. The second considerable aspect is the possibility of
reducing the computational complexity of the nominal robot model (by employing approximate
robot models) without the significant loss in control quality that was notable with fixed-gain control.
Although the issues related to sensitivity to parameter variations were not explicitly investigated,
an improved robustness of the variable-gain controller is implied by the results obtained from
experiments with approximate robot models.

24.5 Neuro-Fuzzy Approach in Robotics

Although fuzzy logic can directly and easily encode expert knowledge using rules with linguistic
labels, it often takes a lot of time to design and tune the membership functions that quantitatively
define these linguistic labels. Wrong membership functions can lead to poor controller performance
and possible instability. An execellent solution is to apply learning techniques by neural networks
that can be used to design membership functions automatically, thus reducing development time
and cost while improving performance. These combined neuro-fuzzy networks can learn faster than
neural networks. Also, they provide a connectionist architecture that is easy for very large scale
integrated (VLSI) implementation of the functions of a traditional fuzzy logic controller with
distributed learning abilities.

The most proposed neuro-fuzzy networks are, in fact Takagi-Sugeno controllers,49 where the
consequent parts of linguistic rules are constant values. Figure 24.20 shows the commonly used
connectionist fuzzy system. The system has a total of five layers. Nodes at layer one are input
nodes (linguistic nodes) which represent input linguistic variables, Nodes at layer two act as
membership functions (in Figure 24.20 they are the Gaussain functions) to represent the terms of
the respective linguistic variable. Each node at layer three is a rule node that represents one fuzzy
rule. Thus, all layer-three nodes form a fuzzy rule base. Layer five is the output layer. Links at
layers three and four function as a connectionist inference engine.

There are many different supervising learning methods for neuro-fuzzy networks.27,40 Many
learning methods are application of the backpropagation method to neuro-fuzzy systems. In addition
to gradient-descent techniques, reinforcement learning7 and some hybrid learning techniques21 are
proposed. One of the most important is ANFIS (adaptive-network-based fuzzy inference system).21

The learning rule is a hybrid method that combines the gradient descent and the least square estimate
to identify the parameters of ANFIS. Usually, neuro-fuzzy networks are trained by applying hybrid
techniques where the consequent parts of the rules are adapted with a supervised method and the
parameters of the antecedent parts are updated with an unsupervised technique (vector quantization).
The idea comes from the field of radial basis functions neural networks.

The one of most important applications of fuzzy-neural networks in robotics is in the field of
mobile robotics.22 A mobile robot is a nonlinear plant that is difficult to model. The state variables
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of a mobile robot are easy to visualize: they have an intuitive relation to the robot’s behavior.
Therefore, the linguistic if–then rules could be defined in an intuitive way. The problem occurs
when a robot has many sensors and actuators. The complexity of the controller increases and the
construction of the rule base is more complicated, especially if complex behavior is required. Hence,
fuzzy-neural networks are specially applied for the complex task of mobile robot navigation and
obstacle avoidance in real time. The network’s input data are based on direct or indirect data from
many laser, infra-red, and ultrasonic sensors and some other robot velocity sensors that measure
the robot’s distance from obstacles in the environment, the heading angle between the robot and
the specified target, and the velocity of the robot. The network’s output values are the control
signals for the robot’s wheels to determine the appropriate direction of the motion and velocity of
the robot. Learning appropriate behavior in the training process defined by the fuzzy-neural con-
troller can be accomplished by the supervisor or by using reinforcement learning for unsupervised
learning. In this way, by learning the designer can extract fuzzy rules. Experimental results55 show
that proposed neuro-fuzzy systems can improve navigation performance in complex and unknown
environments. This architecture is suitable for robot navigation by multisensor fusion and integration.

Fuzzy-neural networks can be efficiently applied to learning dynamic control and position/force
control.25 It is especially effective in the case when control is applied to an unknown environment.
The input data for this type of problem are the appropriate position, velocity, or force errors, while
the output of fuzzy-neural network is the control signal.

24.6 Genetic Approach in Robotics

Genetic algorithms (GA) are the global search algorithms for solving optimization problems based on
the mechanism of natural selection and natural genetics. It is not a gradient search technique, because
the algorithms combine survival of the fittest among string structures (binary or nonbinary type) with
a structured yet randomized infomation exchange. Furthermore, GA is not considered a mathematically
guided algorithm. It is merely a stochastic, discrete event and a nonlinear process that gives the optima
containing the best elements of previous generations. GA is inspired by the biological process in which
stronger individuals are likely be the winners in a competing environment. It presumes that the potential
solution of a problem is an individual and can be represented by a set of parameters. These parameters
are regarded as the genes of a chromosome and can be structured by a string of values in binary or
nonbinary form. The fitness value is used to reflect the degree of “goodness” of the chromosome for

FIGURE 24.20 The structure of fuzzy-neural network.
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solving the problem, and this value is closely related to its objective value. Through genetic evolution,
a fitter chromosome tends to yield good-quality offspring, which means a better solution to the
optimization problem. In each cycle of genetic operation, an evolving process, a subsequent generation
is created from the chromosomes in the current population. This process is achieved through a specific
selection routine. The genes of the parents are mixed and recombined to produce offspring. The cycle
of evolution is repeated until a desired termination criterion is reached. This criterion can also be set
by the number of evolution cycles, the amount of variation of individuals between different generations,
or a predefined value of fitness.

To facilitate the GA evolution cycle, two fundamental operators, crossover and mutation, are
required. The crossover process is a reform operation for the survival candidates and is performed
by exchanging pieces of string using information from old strings. The pieces are crossed in pairs
of strings selected randomly. However, mutation is applied to each offsping individually with
random alteration of each bit with a small probability with a typical value of less than 0.1. The
choice of crossover and mutation probability can be a complex, nonlinear otimization problem.

The general structure of GA is shown by the following algorithm:

Genetic Algorithm 

{
*** initial time
t:=0;
*** initialize a random population of individuals
initpopulation P(t);
*** evaluate fitness of all individuals in population
evaluate P(t);
*** test for termination criterion
while not done do
    *** increase the time counter
    t:=t+1;
    *** select a sub-population of offspring
    P’:=selectparents P(t);
    *** recombine the genes of selected parents
    recombine P’(t);
    *** mutation of each offspring
    mutate P’ (t);
    *** evaluate the new fitness
    evaluate P’ (t);
    *** select the survivors from actual fitness
    P:=survive P,P’ (t);
od
}

GA can be efficiently applied in the various research areas of mobile, industrial, and locomotion
robotics. The one of dominant application of GA is the kinematic domain for trajectory optimization
and navigation in mobile robotics. Michalewicz65 adopted the order-based coding in his evolutionary
navigator for mobile robot. A chromosome in an evolutionary navigator (EN) is an ordered list of
path nodes. Each of path nodes, apart from the pointer to the next node, consists of x and y
coordinates of an intermediate knot point along the path, and a Boolean variable b indicating
whether the given node is feasible or not. EN unifies off-line and on-line planning with a simple
map of high-fidelity and efficient planning algorithms. The off-line planner searches for the optimal
global path from the start to the desired destination, whereas the on-line planner is responsible for
handling possible collisions of previous objects by replacing a part of the original global path with
the optimal subtour.
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An interesting approach for GA optimization in robotics is tuning control parameters for some
specific robot applications. For many robot controllers there are currently no systematic approaches
to choose controller parameters to obtain desired performance. Controller parameters are usually
determined by trial-and-error through simulations and experimental tests. In such cases, the para-
digm of GA appears to offer an effective way for automatically and efficiently searching for a set
of controller parameters for better performance. The effectiveness of this approach is demonstrated
by applying a simple and efficient decimal GA optimization procedure for tuning and optimizing
robust controllers for position/force control and control of flexible link robots.41 The robust con-
troller is developed based on stability theory and uses special fitness functions. It is a special GA
algorithm with decimal real-number type representation (instead of binary type). The specially used
fitness functions are integral time-multiplied absolute value of errors (ITAE) and the normally used
integral of squared errors (ISE).

For locomotion robots, GA can be efficiently applied to hierarchical trajectory generation of the
natural motion of bipeds using energy optimization.24,35 The hierarchical trajectory generation
method consists of two layers, one is the GA that minimizes the total energy of all actuators, and
the other is the evolutionary programming layer that optimizes interpolated configuration of biped
locomotion robots. The second example is application of GA to PD local gain tuning and deter-
mination of nominal trajectory for dynamic biped walking. Designs to achieve different goals, such
as being able to walk on an inclined surface, walk at a high speed, or walk with specified step size,
have evolved with the use of GA.

GA are particularly efficient as hybrid techniques with other intelligent soft-computing methods.
Together with neural networks, GA can be efficiently applied to determine optimal weighting
factors, the topology of networks (number of neurons, number of layers, types of activation
functions) and parameters of learning rules. Together with fuzzy rules, GA can be efficently applied
to optimization of membership functions, the number of rules, and the parameters of consequent
part of rules. On the other hand, fuzzy logic and neural networks can be evaluation functions for
GA in the case of complex optimization problems.

In fuzzy-genetic algorithms, it is necessary to solve some problems connected with transformation
between the domain of fuzzy knowledge and the GA-coded domain together with using initial
expert knowledge for better further searching. In one special example (hierachical fuzzy controller
for control of flexible link robots),3 GA performs optimization of two fuzzy systems: the fuzzy
extractor of features at the higher control layer and the fuzzy controller at the lower control layer.
For this problem there is very interesting hardware solution where the fuzzy controller works on a DSP
board in direct connection with a GA that is executed on a Pentium 133 MHz board. Another typical
application of the GA–fuzzy approach in robotics is tuning of local fuzzy-PID controller gains.2

GA is applied with the connectionist approach to control visually guided swing motions of a
two-armed bipedal robot.26 The goal is that the neural network learns from the GA swing motion
based on visual informatiion from the virtual environment. The goal of visual swing motion is
increasing swing amplitude by changing the gravity center in direction of the swing radius acquired
through the process of environment recognition using cameras. The inputs in the network are optical
signals from cameras, while the outputs are knee joint angles. GA optimizes the three sets of
weighting factors of the proposed multilayer perceptron (Figure 24.21). The initial population is
200. The GA–connectionist approach includes determining the weighting factor for recurrent
networks for generation of stable biped motion.47

24.7 Conclusion

The challenge to future intelligent control system researchers and designers in robotics is to take
advantage of the desirable properties of different composite soft-computing control paradigms. It is
important to combine the experience and dependability of classic and traditional adaptive control
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methods with the potential and promise of soft-computing techniques. One promising idea is the
integration of various artificial intelligence paradigms (expert systems, connectionist systems, fuzzy
logic, evolutionary algorithms) for the purpose of robot control. The goal of the hybrid approach for
robot control is to overcome the weaknesses of each individual intelligent technique by combining it
with another complementary intelligent paradigm. This approach is the basis for the development of
a generation of intelligent, highly adaptive robotic systems.
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