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Appendix: Calculation of Transformation Matrices

We start our discussion on robot dynamics from the standpoint that successful design and control
of any system require appropriate knowledge of its behavior. This is certain, but we should discuss
what is meant by “appropriate knowledge.” Let us consider a robot as an example of a technical
system. Appropriate knowledge of its behavior may, but need not, include the mathematical model
of its dynamics. In the earlier phases of robotics development, design was not based on the exact
calculation of robot dynamics but followed experience from machine design. Control did not take
into account many dynamic effects. Large approximations were made to reduce the problem to the
well-known theory of automatic control. The undeveloped robot theory could not support a more
exact approach. For a long time, the practice of robotics (design, manufacture, and implementation)
grew independently of the theory that was too academic. However, this did not stop manufacturers
from producing many successful robots.

Presently, the need for complex, precise, and fast robots requires a close connection between
theory and practice. Regarding the application of robot dynamics, the main breakthrough was made
with the development of computer-aided methods for dynamic modeling.

 

1-3

 

 Such methods allowed
fast and user-friendly calculations of all relevant dynamic effects. In this way dynamic modeling
and simulation became the essential tools in robot design. The other possibility for application of
robot dynamics is the synthesis of the so-called dynamic control.

In this subsection we first discuss the principles of dynamic modeling, the approach to the
description of dynamics, and the derivation of the mathematical model. Then, special attention is
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paid to computer-based methods. To complete the information on robot dynamics, the mechanism
model should be supplemented with the driving system model. After that, we briefly describe the
application of the dynamic model. One of the promising directions is the development of CAD
systems for robots. The other is dynamic control. Some extension of robot dynamics is made and
discuss different effects that were not included in the initial model, trying to locate those of main
importance (contact problems, elastic deformations, friction, impact, etc.).

 

20.1 Fundamentals of Robot Dynamic Modeling

 

20.1.1 Basic Ideas

 

From the notion 

 

dynamic modeling

 

 we understand the system of differential equations that describes
robotic dynamic behavior. We expect the reader to possess the knowledge necessary to understand
the derivation of the model. However, we will try to give enough information at an adequate level
of presentation to allow readers to follow the text easily.

Here we consider a manipulation robot as an open and simple kinematic chain (as shown in
Figure 20.1) consisting of 

 

n

 

 rigid bodies (robot links) interconnected by means of 

 

n

 

 one-degree-
of-freedom (one-DOF) joints. A joint allows one relative rotation (revolute joint) or one relative
translation (linear joint). Because the complete chain has 

 

n

 

 DOFs, its dynamics can be described
by means of 

 

n

 

 differential equations of motion. They are second-order equations. This set is called
the 

 

dynamic model

 

.
Several approaches have been used to describe system dynamics: laws of linear momentum and

angular momentum.

 

1-4

 

 Lagrange’s equations,

 

5,6

 

 and Gauss’ principle.

 

7,8

 

 All approaches lead to the
same dynamic model but the model formation procedure is different. Here, we use the laws of
linear momentum and angular momentum. This approach is often called Newton–Euler equations.
In the authors’ opinion it is the most appropriate for the majority of readers.

Let us introduce one position coordinate for each joint, angle in the revolute joint, and longitudinal
displacement in the linear joint. This set of coordinates uniquely describes the position of the chain.
We usually call this set the 

 

internal coordinates

 

 (or joint coordinates, or generalized coordinates).
If the coordinate for joint 

 

S

 

j

 

 is marked by 

 

q

 

j

 

, then the complete position vector is

 (20.1)

 

20.1.2 Robot Geometry

 

At this point we have to decide the mathematical presentation of robot geometry and kinematics.
Up to now, two ways have been defined. One is based on the Rodrigues’ formulae of finite rotation
and the other uses the Denavit–Hartenberg parameters. The latter method is more widely accepted

 

FIGURE 20.1

 

Robot as a simple and open chain.
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because it allows simpler expression of transformation matrices and probably faster calculation of
robot kinematics. However, if the intention is to discuss dynamics, it should be stressed that the
first method is more appropriate. It is more general and follows the rigid body motion approach
used in all standard textbooks on mechanics. For these reasons, we utilize the method based on
Rodrigues’ formulae.

Figure 20.2 shows one link of the robot chain, the 

 

j

 

-th one. Joint 

 

S

 

j

 

 is shown as revolute and 

 

S

 

j+

 

1

 

as linear. To define the link geometry, it is necessary to describe the position and the orientation
of the joints with respect to the mass center (MC).

The motion direction in each joint is defined by means of an axis, that is, by a unit vector. It
can describe rotation or translation, depending on the type of joint. Thus  corresponds to joint

 

S

 

j

 

 and  to . The relative position of MC with respect to the joints is defined by means of
vectors  and  as shown in the Figure 20.2. MC is marked by 

 

C

 

j

 

.
During robot motion, positions of all links, and accordingly, geometry vectors expressed in the

immobile external frame, change. However, if geometry vectors are considered relative to the
corresponding link, they become constant and represent the property of the link itself. To express
these constant values, we introduce a Cartesian system fixed to the link and with the origin in the
MC (link-fixed frame). The axes are 

 

x

 

j

 

, 

 

y

 

j

 

, and 

 

z

 

j

 

. The system may be oriented in an arbitrary way
but is most suitable if its axes coincide with the so-called principal axes of inertia. Consider now
vector . It can be expressed by means of three constant projections onto the axes of the frame
fixed to the link 

 

j:

 

 , and . For this triple we introduce the notation

 (20.2)

The tilde “~” above the letter indicates that the vector is expressed in the link-fixed frame.
Notation  (without tilde) denotes three projections onto the axes of an external immobile frame.
If the same is applied to vectors  and,  two constant triples are obtained

 (20.3)

 (20.4)

Vector  is constant if expressed in the frame fixed to link 

 

j

 

 and a suitable notation is needed
for these projections. Notation  indicates that the vector is considered relative to link 

 

j 

 

+ 1
(analogously to relation (20.2)). Hence, a new notation is introduced to indicate the projections
onto link 

 

j

 

:

 (20.5)

 

FIGURE 20.2

 

Geometry of a link.
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Generally, for any vector  having index 

 

j

 

, the tilde “~” above the letter ( ) indicates the
projections onto frame 

 

j

 

, while the tilde under the letter ( ) indicates the projections onto the
preceding frame, 

 

j –

 

 1. Notation without the tilde ( ) indicates projections onto the external
immobile frame.

Now, it should be stated that four vectors,  define the geometry of link 

 

j

 

. To
define the geometry of the complete chain, one has to prescribe these four vectors for all links.

It is still necessary to distinguish between the revolute and linear joints. For this purpose we
introduce the indicator 

 

s

 

j

 

 for each joint:

 (20.6)

Now, it is possible to define the joint coordinates more precisely. We consider the revolute joints
first. If 

 

S

 

j

 

 is a revolute joint, then coordinate 

 

q

 

j

 

 represents the angle of rotation measured from the
extended position. The exact definition is shown in Figure 20.3. The angle lies in a plane perpen-
dicular to axis . The negative projection of  defines the extended position (

 

q

 

j 

 

= 0) and the
angle is measured to the projection of . Figure 20.3a shows the extended position and
Figure 20.3b the rotated position.

Suppose now that joint 

 

S

 

j

 

 is linear. Coordinate 

 

q

 

j

 

 defines the length of translation along  and
its precise definition requires previous introduction of the zero position. This zero-point can be
adopted anywhere on the axis of translation. It is marked by  in Figure 20.4. Once adopted, this
point determines the vector . Coordinate 

 

q

 

j

 

 is defined as the displacement  with the proper
sign with respect to  (see Figure 20.4).

It is necessary to introduce an additional vector.  It follows from Figure 20.4. that

 (20.7)

or, more generally,

 (20.8)

For a linear joint (

 

s

 

j 

 

= 1) relation (20.8) becomes (20.7) and for revolute joints (

 

s

 

j 

 

= 0) it reduces
to . Thus, expression (20.8), i.e., vector , may replace  for any type of joint.

 

FIGURE 20.3

 

Definition of a coordinate in a revolute joint.
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After introducing different frames (link-fixed and external immobile) the question arises about
the possibility of transforming a vector from one frame to another. Let us consider a vector .
For the transition between the frames, transformation matrices are applied:

From the 

 

j

 

-th link-fixed frame to the external one

 dim 

 

A

 

j 

 

= 3 

 

×

 

 3  (20.9)

and in the opposite direction

 (20.10)

From the 

 

j

 

-th link-fixed frame to the (

 

j –

 

 1)-th one

 (20.11)

and in the opposite direction

 (20.12)

It could be noted that the matrices are orthogonal and thus the inverse equals the transpose.
A detailed explanation of how to calculate the transformation matrices is given in this chapter’s

appendix.

 

20.1.3 Equations of Dynamics

 

We start by considering dynamics from one of the links, the 

 

j

 

-th one. For this purpose we fictively
interrupt the chain in joints 

 

S

 

j

 

 and . The disconnection in joint 

 

S

 

j

 

 is shown in Figure 20.5a. The

 

FIGURE 20.4

 

Definition of coordinate in a linear joint.
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mutual influence of the two links is expressed in terms of a force and a couple.  denotes the
force and  denotes the moment of the couple. They act in the forward direction (from link 

 

j –

 

 1 to
link 

 

j

 

) while  and  act in the backward direction (from 

 

j

 

 to 

 

j

 

 – 1).
Figure 20.5b shows the link 

 

j

 

 together with all forces and couples acting upon it. We use the law
of linear momentum (Newton’s law) to describe the motion of MC:

 (20.13)

where 

 

m

 

j

 

 is the link mass,  is MC acceleration, and  is the acceleration due to gravity (9.81
m/s

 

2

 

). The law expresses the equilibrium of the inertial and real forces.
Now, we discuss the rotation of the link about its MC. It can be described by the law of angular

momentum (Euler’s equations):

 (20.14)

where  and  are the angular acceleration and angular velocity. The tilde “~” indicates that the
vectors are expressed in the frame fixed to the link 

 

j

 

.  is the tensor of inertia calculated for the
axes of the link-fixed frame. In a general case, the tensor has the form

 (20.15)

However, if the frame axes are placed to coincide with the principal inertial axes, then the tensor
takes the diagonal form

 (20.16)

where  is the inertial moment with respect to axis 

 

x

 

j

 

 and analogously holds for  and .

 

FIGURE 20.5

 

Extraction of one link from the chain.

M S
SF

- M S

- F

M SF

- M S

- F S

r

C

- F S

FS

r

M S

- M S

gm

(a) (b)

j , j+1

jj

j+1

j+1j

j , j
j -1

j

j
j

j

j

j

 

r
FSj

 

r
MSj

 
−

r
FSj   

−
r

MSj

 
m w m g F Fj j j S Sj j

r r r r
= + −

+1

r
wj   

r
g

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜
~ , , ~

J J M M r F r Fj j j j j S S j j S j j Sj j j j

r r r r r r r r r
ε ω ω+ × ( ) = − − ′ × + ×

+ +
+1 1

1

 
˜
r
ε j  

˜
r
ω j

J̃ j

J̃

J J J

J J J

J J J
j

xx xy xz

yx yy yz

zx zy zz

j j j

j j j

j j j

=



















J̃

J

J

J
j

x

y

z

j

j

j

=



















Jx j
Jyj

Jzj

 

8596Ch20Frame  Page 492  Tuesday, November 6, 2001  9:54 PM

© 2002 by CRC Press LLC



   

It should be mentioned that Equation (20.13) is written in the external frame, while (20.14) is
written in the link-fixed frame. Equation (20.13) could be simply rewritten and expressed in the
link-fixed frame, while (20.14) cannot change the frame so easily. It would have to be multiplied
by transformation matrix 

 

A

 

j

 

.
We now discuss force  and couple  transmitted through the revolute joint 

 

S

 

j

 

 (Figure 20.6).
First, we consider the “pure” reactions, force and couple, that follow from the mechanical connec-
tion of the two links. Because the joint permits one rotation (about ), the reaction force  (from
link 

 

j

 

 – 1 to link 

 

j

 

) may be of arbitrary direction, while the reaction couple  is perpendicular
to axis  (that is, ). In the revolute joint a driving torque  acting about axis  exists. In
the vector form, the drive is . Thus, the total force and couple transmitted through the joint are

 (20.17)

Consider now a linear joint 

 

S

 

j

 

 (Figure 20.7). The total force  transmitted through the joint has
two components, the reaction force , and the driving force . The reaction is perpendicular
to the axis  (that is, ). The total couple  consists of reaction only and can be of arbitrary
direction. Thus, it holds that

 (20.18)

Equations (20.17) and (20.18) can be written in a unique way that fits both the revolute and the
linear joints:

 (20.19)

 

FIGURE 20.6

 

The total force  and the total couple  in a revolute joint.
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where 

 

s

 

j

 

 indicates the type of joint (see (20.6)).
Equations (20.13) and (20.14), together with (20.19), describe the dynamics of link 

 

j

 

. If we apply
these equations to all links, we arrive to the system of 2

 

n

 

 vector equations describing the dynamics
of the complete chain:

 (20.20)

Our intention is to find the dynamic model in its minimal form. It should directly connect the input
(drives ) and the output (motions 

 

q

 

j

 

). First, it is necessary to express all kinematic variables
(velocities and accelerations) in terms of the joint coordinates (

 

q

 

j

 

) and their derivatives ( ).
After that we eliminate all the reactions,  and , 

 

j 

 

= 1, …, 

 

n

 

. Let us analyze the number of
equations and the number of unknowns that should be eliminated. System (20.20) consists of 2

 

n

 

vector equations, that is, 6

 

n

 

 scalar equations. The number of reaction vectors is also 2

 

n

 

, two in
each joint. However, the number of unknown scalar components for elimination is 5

 

n

 

, that is, five
in each joint. This is because the reaction vector with an arbitrary direction has three unknown
scalar components, while the one perpendicular to the joint axis has two. Thus, after eliminating
5

 

n unknowns from 6n equations, we obtain a system of n scalar equations that does not contain
reactions, but only the drives τ1, …, τn. The methodology for elimination of joint reactions represents
the characteristics of each method for dynamic modeling. One method will be explained in the
next paragraph.

Regardless of the method chosen for dynamic modeling, a set of differential equations is obtained.
Equations are linear with respect to the second derivatives:

 (20.21)

FIGURE 20.7 The total force  and the total couple  in a linear joint.
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Notation Hij(q) indicates that the coefficient depends on all elements of the joint position vector
q = [q1 … qn]T, and hj(q, ) indicates that the free member depends on the coordinates q and their
derivatives . System (20.21) may be written in matrix form

 (20.22)

where H = [Hij]dim = n×n is called the inertial matrix, h = [hj]dim = n×1 takes into account the gravity,
centrifugal, and Coriolis effects, and τ = [τ1 … τn]T is the vector of drives.

Let us discuss drives τ a little more. τj represents the driving torque about the joint shaft if the
joint is revolute, or the force along the sliding axis if the joint is linear. In any case, the drive is
produced by some actuation system (electric, hydraulic, or pneumatic) and then transmitted to the
joint (by means of gears, chain, belt, etc.). Thus, τj is the output action of an actuator-plus-
transmission assembly. This means that the previously derived model (Equation 20.22) describes
only one part of robot, its mechanism, while the actuation system model is still missing.

20.2 Recursive Formulation of Robot Dynamics

In the previous paragraph we described robot dynamics by means of a set of 2n vector
equations (model (20.20)). The model included the reaction forces and couples  and  and
their elimination was recognized as essential for the minimization of the model form. Here, we
use a recursive approach to kinematics and dynamics to carry out this elimination. The method is
specially suitable for the creation of a computer procedure for dynamic modeling.

20.2.1 Velocities and Accelerations of Robot Links

Position and speed define the state of each link of a kinematic chain and accordingly the state of the
entire chain. The position was discussed previously and it was found that the joint coordinates q = [q1

… qn]T describe the chain position in the most appropriate way. Now, we are going to discuss speed.
If we consider the spatial motion of the link j, we find that it is characterized by the velocity of

its MC (e.g., of point Cj in Figure 20.8) and the angular velocity. Let  and  be these velocities.
Our intention is to express these quantities in terms of joint coordinates q and joint velocities .
The recursive approach will be applied, and hence, we consider two links, j – 1 and j, interconnected
by means of joint Sj (Figure 20.8).

The angular velocity is obtained by the superposition of rotations. If Sj is a linear joint (indicator
sj = 1), it does not contribute to rotation and if it is revolute (sj = 0), its contribution is  Thus,
we may write a general expression

 (20.23)

FIGURE 20.8 Velocities of robot links.
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showing the recursive character of angular velocity. Making the derivative of (20.23) one obtains
the expression for acceleration:

 (20.24)

For the MC position vector, , the recursive expression holds:

 (20.25)

from which the first derivative gives MC velocities

 (20.26)

and the second derivative gives the MC accelerations

 (20.27)

All the vectors in Equations (20.23) to (20.27) are expressed in the external immobile frame.
Note that it is possible to transform the equations to the link-fixed frame j or j – 1.

We now express the velocities and accelerations of link j in terms of coordinates q and derivatives
 and . Velocities  and  represent linear forms with respect to joint velocities:

 (20.28)

 (20.29)

where j in  and  represents an upper index and not an exponent. Accelerations of the link are
linear forms with respect to the joint accelerations:

 (20.30)

 (20.31)

We now turn to matrix notation. For this reason we introduce a 3 × 1 matrix for each vector and
use a proper notation. For instance, ωj denotes the 3 × 1 matrix corresponding to vector , and
analogously holds for all other vectors (we simply omit “→”). Relations (20.28) to (20.31) can
now be written in the form

 (20.32)
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 (20.33)

 (20.34)

 (20.35)

where Λj and Γj are 3 × n and 3 × 1 matrices (respectively) containing the coefficients and the free
member of the linear forms (20.28) and (20.30):

 (20.36)

 (20.37)

and Ξj and ∆j are 3 × n and 3 × 1 matrices that contain the coefficients and the free member of
(20.29) and (20.31):

 (20.38)

 (20.39)

Matrices Λ, Γ, Ξ, and ∆ are very often written without the upper index j. This is because in
software realization one variable is used for each matrix and it is modified when a new index j is
considered. Thus, j is the index of iteration. Now, let us analyze how matrices Λ, Γ, Ξ and ∆ change
when j increases. Starting from (20.23) to (20.27), we find that when passing from j – 1 to j, the
following modifications of the matrices are needed:

 (20.40)

 (20.41)

 (20.42)

 (20.43)

Thus, it is possible to form matrices Λ, Γ, Ξ, and ∆ in a recursive manner. In each iteration, a
new link is added to the chain (e.g., link j). Transformation matrix Aj is calculated to allow expressing
the geometry vectors in the external frame. Now, applying the recursive expressions (20.40) to
(20.43), matrices Λ j, Γj, Ξ, j and ∆ j are found starting from Λ j–1, Γj–1, Ξ j–1, and ∆ j–1.
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20.2.2 Elimination of Reactions — Minimization of Dynamic Model Form

Dynamics of the robot chain was described by means of 2n vector Equations (20.20). It was stressed
that reactions in joints should be eliminated to reduce the dynamic model to its minimal form
(20.21), that is, to n scalar equations. Here, we describe the recursive procedure for the elimination.
The procedure begins by considering a part of the kinematic chain, from a selected joint to the free
end (Figure 20.9). Let the selected joint be Sj. We now consider the subchain that consists of the
links . The fictive break is made in joint Sj and the influence of the preceding link is
expressed in terms of force  and couple . Now, we apply D’Alambert’s principle and establish
the equilibrium of the real and inertial forces acting on the considered part of the chain. The system
of forces includes gravity forces, inertial forces, joint force , and joint couple .

The inertial load of a link (let it be link k) is distributed all over it, but can be reduced to a
resultant inertial force acting at the MC, and a resultant inertial couple. The force is

 (20.44)

and acts in point Ck; mk is the link mass. The moment of the couple can be expressed in Euler’s form

 (20.45)

where  is the tensor of inertia. Couple (20.45) is expressed in the link-fixed frame and transfor-

mation matrix Ak could be used to transfer it to the external frame: . The gravity load

of the link is

.  (20.46)

where  denotes the gravity acceleration.
D’Alambert’s equilibrium concerns . Equilibrium of forces gives

FIGURE 20.9 A part of the robot chain.
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 (20.47)

Equilibrium of moments of forces is found with respect to point Sj, yielding

 (20.48)

where

(20.49)

Suppose now that joint Sj is linear (indicator sj = 1), as shown in Figure 20.7. According to
(20.18), force  consists of the driving component  acting along the joint axis and the reaction
force  perpendicular to that axis. To eliminate the reaction, we multiply Equation (20.47) by the
joint axis vector , obtaining the scalar expression for the driving force

 (20.50)

where (20.44) and (20.46) are substituted.
In the other case we suppose that Sj is a revolute joint (indicator sj = 0) as shown in Figure 20.6.

According to (20.17), the moment of couple  consists of the driving torque  acting about
the joint axis, and the reaction couple  perpendicular to the axis. Multiplication of
Equation (20.48) by axis vector  eliminates the reaction, thus giving the scalar expression for the
driving torque

.  (20.51)

where expression (20.45) multiplied by Ak, and expressions (20.46) and (20.44) are substituted.
To summarize, in the case of a linear joint, the drive is expressed in form (20.50) and for a

revolute joint in form (20.51). This can be applied to joints . So, dynamics of the robot
chain is described by means of n scalar equations expressing the drives. In relations (20.50) and
(20.51), MC accelerations, , and angular accelerations, , appear. These accelerations can be
expressed in terms of joint accelerations by using linear forms (20.34) and (20.35). In this way
(20.50) is transformed to

.  (20.52)

where vector notation is replaced by 3 × 1 matrices (omitting “→”). Further transformation yields
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where

  (20.54)

are of dimensions 1 × n and 1 × 1, respectively.
If (20.51) is transformed to depend on joint accelerations (introducing (20.34) and (20.35)), one

obtains

 (20.55)

where for any vector, e.g., , notation  understands the matrix

 (20.56)

that serves to perform the vector product in matrix form. Further transformation of (20.55) yields

 (20.57)

where

 (20.58)

are of dimensions 1 × n and 1 × 1, respectively.
In the described way we have found the expressions for the joint drives in terms of joint

accelerations. For a linear joint, form (20.53), along with (20.54), holds while for a revolute joint
form (20.57), along with (20.58), applies. For the complete chain (all joints), the following matrix
relation can be written

 (20.59)
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are of dimensions: τ (n × 1), H (n × n), h (n × 1). Thus, we have come to the previously stated
form of the dynamic model, that is, Equation (20.22). Expressions (20.54) and (20.58) offer the
possibility of recursive calculation of matrices H and h.

20.2.3 Calculation of Direct and Inverse Dynamics

The notions of direct and inverse dynamics are introduced in theoretical mechanics when consid-
ering the behavior of a mechanical system under the action of forces. The direct dynamic problem
understands that system motion is known and the forces that cause this motion are to be calculated.
The opposite problem, calculation of motion for the given forces, is called inverse dynamics. One
should note that some authors interchange these terms. Although one might find some justification
for this, we keep the definition as given above because “our” inverse dynamics needs the inversion
of the inertial matrix, thus making a suitable association. For a robotic chain, direct dynamics
means calculating drives τ for the prescribed robot motion q(t), while inverse dynamics understands
the calculation of motion q for the given drives τ. Model (20.22) offers the possibility of solving
both problems. Here, we give a general approach to problem solution. Details cannot be discussed,
because they depend on the used method. For instance, if the dynamic model was found in its
symbolic form, the procedure for the solution would differ to some extent from the procedure used
with numerical models.

Consider the direct dynamics first. When we say that the motion q(t) is known, it means that
velocity  and acceleration  are known, too. Hence, direct dynamics generally involves
derivation. Note that sometimes the motion is given by directly prescribing the acceleration. This
is the case if a trapezoidal velocity profile is required (constant acceleration is followed by a uniform
motion, and finally, constant deceleration stops the system). In such cases the solution includes
integration to find the velocity and the position. In any case, relation (20.22) is used to calculate
the drives τ. Calculation of direct dynamics is needed for several reasons. First, it is possible to
obtain the preliminary information about the drive and power requirements for different robot tasks
without an actual experiment. This is important in the process of robot design and enables the
development of CAD systems for robots. Second, direct dynamics is used to create dynamic control.
It leads to the introduction of feedforward to the robot control scheme.

Inverse dynamics understands the integration of the dynamic model (20.22). Initial state (position
q(0) and velocity  are needed. Most standard procedures for numerical integration require
the differential equations systems be written in a canonical form. Hence, model (20.22) is rewritten:

 (20.61)

The calculation of inverse dynamics plays the central role in any simulation system. This fact
sufficiently explains the great importance of this problem.

The discussion in Section 20.2 proves that the computer can successfully be used for forming
and solving the robot dynamic model. This conclusion is important because any attempt to write
the dynamic model of a multiple joint system “by hand” would probably lead to numerous errors.
This is because of extreme complexity of the equations that describe the dynamics of spatial multi-
joint chains. The research efforts in the field of computer-aided dynamic modeling have resulted
in several commercially available program packages.9,10

20.3 Complete Model of Robot Dynamics

In the previous paragraphs discussion on dynamics was restricted to robot mechanisms. Dynamics
was understood as a relation between joint drives τ and joint motions q. Now, we note that with a
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real robotic system, joint torques (or forces) cannot be considered as control variables. Some
actuators produce them and the actuators introduce their own dynamics. Each actuator has an input
control variable and the drive it produces depends on the control as well as on the dynamic behavior
of the entire system. Hence, we may say that the joint torques (or forces) τ describe the interaction
between the two subsystems that form a robot: the chain and the actuators.

To describe the dynamics of the entire system, it is necessary to discuss the possible actuators.
A completely general discussion that would cover all the possible types of actuators would be very
extensive, because robots can be equipped with many types of different actuators: DC motors,
synchronous AC motors, stepping motors, different electrohydraulic actuators, and pneumatic
systems. Our intention is to show the modeling methodology for the dynamics of the entire robot.
For this reason we first choose one type of actuator, a DC motor. After completing the model for
this particular case, we make some generalizations to cover different types of actuators. More
detailed discussion on robot driving system is given in Chapter 21.

20.3.1 Dynamic Model of a DC-Driven Robot

Permanent magnet DC motors are very common actuators with robotic systems. Their main
advantage is simple control by varying the input voltage. The main disadvantage, however, follows
from graphite brushes. Some other problems that are common characteristics of all electric drives
should be mentioned. It is a fact that they rotate fast and produce relatively small torques. Thus, a
gear-box is usually needed to reduce speed and increase torque. Further, motors are very often
displaced from joints and moved toward the robot base to unload the arm statically. Hence, different
transmissions (chains, belts, gears, shafts, etc.) are needed. This complicates robot construction
and may influence the accuracy of motion. However, good controllability still makes DC motors
very popular.

The dynamics of a DC motor that drives a robot joint Sj is described by the following relations
expressing the mechanical and electrical equilibrium:

 (20.62)

 (20.63)

where θj is the angle of the motor shaft rotation, ij is the armature current, Mj is the output torque,
and uj is the input voltage. Motor parameters are Jj the rotor moment of inertia;  and  the
constants of torque and counter electromotive force; Bj, the viscous friction coefficient; Rj, the
armature resistance; and Lj, inductivity. The dynamic equations can be united to obtain a more
compact canonical form:

 (20.64)

where the state vector xj has dimension three. The state vector and the system matrices are

(20.65)

where, for simplicity, index j is omitted from the elements of the system matrices.
If inductivity L is small enough (it is a rather common case), the term Ldi/dt can be neglected.

Equation (20.63) now becomes
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 (20.66)

and the number of state variables reduces to two. The state vector and the system matrices in
Equation (20.64) are

 (20.67)

It was stated that DC motors are usually followed by some transmission system. The transmission
defines the relation between the joint coordinate qj and the motor coordinate θj. If the transmission
is considered ideal (no backlash, no elastic deformation), the transmission ratio is constant:

 (20.68)

If the dynamics of the transmission system (inertial properties) and the loss due to friction are
neglected, it holds that

 (20.69)

If friction has to be discussed, it is considered through power loss. The efficiency coefficient is
introduced: 0 < ηj < 1. Now, Equation (20.69) is modified. If the motion is in the direction of the
drive,  is used instead of Nj. However, if the motion is opposite to the action of the drive, then

 applies. Note that  and  are generally different. The efficiency of a gear-box in the
reverse direction is smaller ( ).

The dynamics of the robot chain was discussed in Sections 20.1 and 20.2. It was described by means
of n scalar Equations (20.21) or by means of the matrix relation (20.22). If the chain is considered as
one subsystem of the robot and the actuators as the other, then the complete dynamics can be described
by combining the two models: (20.21) for the chain and (20.62), (20.63) for the motors. To simplify
the formulation and stress the main dynamic effects, we neglect the inductivity L and friction B (real
numerical values justify this approximation). Equations (20.62) and (20.63) now yield

 (20.70)

Relations (20.68) and (20.69) that describe the transmission are needed to connect the motor
variables and the joint ones. The motor variables in Equation (20.70), θ and M, are replaced by the
joint variables, q and τ. The torque τ is then substituted from such a modified relation (20.70) into
system (20.21) thus yielding the model

 (20.71)

or in the matrix form

 (20.72)
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where

 (20.73)

By comparing models (20.21) and (20.71) one may conclude that the introduction of motor
dynamics results in increased proper inertia of the joint (diagonal coefficient Hjj is augmented)
while dynamic coupling between joints remains the same (nondiagonal coefficients Hkj do not
change).

20.3.2 Generalized Form of the Dynamic Model

Here we present the procedure for obtaining the complete dynamic robot model for any kind of
actuators.11 The only restriction is that the actuator can be described by a linear model. Let the
dynamics of the robot chain be described by model (20.22) and let the actuator for joint Sj have a
linear model of the form

 (20.74)

where xj is a state vector of dimension nj (e.g., nj = 3 for a DC motor as shown in Equation (20.65)),
Mj is the output torque, and uj is the control variable. Note that uj is subject to the saturation-type
constraint: .

To simplify the derivation we do not discuss the transmission, that is, we assume a direct
connection between the actuators and the joints. In this case, the motion of a joint and that of the
corresponding actuator are equal and both are defined by means of qj, and the torques Mj and τj

(motor and joint) coincide. This simplification does not compromise the generality of presentation,
because the transmission ratio can easily be incorporated when needed.

Let the dynamic model of the chain (Equation (20.22)) be rewritten in a canonical form, according
to (20.61):

 (20.75)

where ζ1 = q, , and . Thus, ζ is the column vector defining the state of the chain
and has the dimension 2n. This equation can further be rewritten:
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Let kj elements of vector xj coincide with elements of ζ, that is, kj state coordinates of the j-th
actuator are already included in the state vector of the chain. Joint position qj and joint velocity 
are usually part of the state vector xj. This means that kj = 2, and summation over all joint actuators,
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be the elements of xj. Instead, linear or nonlinear dependence may exist between qj,  and some
elements of xj.

The dynamics of all actuators can be described if Equations (20.74), for j = 1, …, n, written in
the compact form:

 (20.78)

where vector  of dimension  defines the state of the entire system.
Vector τ = [τ1…τn]T contains the drives, and vector u = [u1…un]T the control inputs. In addition,

C = diag[Cj], F = diag[fj], and D = diag[dj].
Now, we are going to unite the model of the chain, Equation (20.22), and the model of the

actuators, Equation (20.78). Let us introduce the matrix Tj of dimension 1 × nj such that 
For instance, Tj = [010] for the DC drive that has the state  Model (20.22) can now
be rewritten:

 (20.79)

where T = diag[Tj] is an n × N matrix. Substituting  from (20.78) into (20.79) one obtains

τ = (En – HTF)–1 (HT(Cx + Du) + h)  (20.80)

where En is the n-dimensional unit matrix. After substituting τ from (20.80) into (20.78), the
complete robot dynamics model is obtained in the form

 (20.81)

The system matrices are

 (20.82)

with dimensions N × 1 and N × n, respectively.
It is clear that the new form of robot dynamics model requires reformulation of the direct and

the inverse problem. The direct dynamics understands the calculation of the control u that is needed
to produce the prescribed robot motion. Inverse dynamics means the solution of motion for the
prescribed control inputs. This latter problem is called simulation.

20.4 Some Applications of Computer-Aided Dynamics

The formulation of computer procedures for modeling robot kinematics and dynamics made pos-
sible the implementation of robot theory for practical work in design and control problems. Before
that, handwritten dynamics were limited to simple cases and thus could not be successfully applied.
Computer-aided kinematics and dynamics can be used to derive more sophisticated control algo-
rithms and, on the other hand, to assist in robot design. Chapter 21 is devoted to the problem of
robot design. Control issues are elaborated in Chapter 22. A survey of advanced results in these
fields is given there. Hence, we briefly present only some ideas and the principal references. For
historical reasons, we discuss design issues first and then control.

20.4.1 Dynamics and Robot Design

Computer-aided kinematics enables the transformation of robot coordinates from internal (joints)
to external (end-effector) and vice versa. Computer procedures to calculate dynamics solve the

q̇ j
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direct and inverse problems. The direct procedure starts from the prescribed motion and calculates
torques and control inputs. These are primary results, but a lot of additional characteristics can be
found, too. Let us discuss these characteristics briefly.

Based on the dynamic equations for robot links, it is possible to find the vectors of reactions in
robot joints. Further, the distribution of forces along each link can be solved. This result enables
calculation of the mechanical stresses and elastic deformation (bending and torsion of links). For
such calculation, some supplementary dynamic blocks (approximate or exact) would be needed to
accomplish the model explained here. These possibilities show that robot dynamics can be suc-
cessfully applied in the design of robot mechanical structure (geometry, dimensions, cross sections,
choice of materials, etc.).12-14

Calculation of robot dynamics offers a lot of results useful for choosing the appropriate drives
and the design of control systems. In addition to the torques, we can compute the power and energy
requirements, form the diagrams speed vs. torque, etc.13,14 Supplementary software calculates motor
heating.15 Because the dynamic model relates motion and driving input, it can be used to synthesize
the control parameters (e.g., the feedback gains).

The variables calculated for nonperturbed mode by means of the direct dynamic procedure can
be recalculated by simulating the perturbed mode (inverse dynamic procedure). In this way, it is
very easy to prescribe a robot configuration and a task and then examine robot behavior by
computing the different dynamic characteristics. We call this dynamic analysis. The software
realization of such a procedure represents a very useful tool in the robot design process. A designer
can quickly check a large number of different configurations. He or she can vary parameters to see
their influence on some dynamic characteristics. This is of considerable help in fast and successful
design. The next step is made if the limits that we impose in the design (e.g., maximal elastic
deformation) are given to the computer and the software package checks the calculated character-
istics against these limits. If a test is negative, some expert system might suggest how to change
the relevant constructive parameters. In Vukobratović and Potkonjak14 this approach is called the
interactive design system. The final step is formulation of the complete CAD system for robots.
The algorithms and appropriate software that would automatically find the optimal robot parameters
based on the required performances and the imposed limits should be derived. The criterion of
optimality is needed as well as optimization techniques. Certain results in this direction are currently
available.14,16

20.4.2 Dynamics in On-Line Control

During the early stages of robot theory, an idea to formulate the control algorithm that takes care
of robot dynamics, the so-called dynamic control appeared.11 For a long time this idea was just a
theoretical possibility. On one hand, the calculation of dynamics was not possible in real time, and
on the other, the relatively low speed and acceleration required did not justify dynamic control.
However, with current very fast and precise robots, implementation of dynamics in the control
algorithm becomes necessary. It is used to form the feedforward control signal. Figure 20.10 shows
such control schemes. In case (a) the feedforward signal (nominal control u*) is found based on
referent (prescribed) motion. If the motion is completely defined in advance, it is possible to
calculate the direct dynamics offline and store the nominal control in the computer memory. It is
recalled when the robot starts to execute the task. If referent motion is defined online (e.g., guided
by means of a joystick or a sensor), on-line computation of nominal control is necessary. In case
(b), the feedforward signal is found on the basis of a real state (measured data). Such a scheme
understands online calculation of robot dynamics. The quality of the dynamic model (effects that
are included) is relevant for the quality of robot control.
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20.5 Extension of Dynamic Modeling — Some Additional 
Dynamic Effects

Our purpose is to explain some dynamic effects that are not usually discussed in books on general
robotics. However, these effects could be very important in some theoretical and practical work on
control and design. We start with a review of the problems significant in robot dynamics and indicate
the sources of particular effects. Next, some of the problems are selected and explained in more detail.

20.5.1 Robot Dynamics — Problems and Research

Beginning research in robot dynamics dealt with robots represented by an open kinematic chain. Robot
links, as well as all transmission elements (shafts, gears, etc.), were considered nondeformable (Problem
1 in Figure 20.11). Many authors have worked in this field and we mention only few early results.1-8

This approach covered many important dynamic effects and for a long time discussions on robot
dynamics were restricted to such problems. This is still the case with most textbooks.

FIGURE 20.10 Scheme of dynamic control with feedforward signal.
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The fact that many robot tasks include contact of the end-effector and the robot environment led
to the first research on contact dynamics.14 Robot environment was considered in the form of a
geometric constraint (Problem 2 in Figure 20.11). The stationary and nonstationary cases were

FIGURE 20.11 Different effects in robot dynamics.
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discussed. The constraints imposed to the end-effector resulted in reaction forces. Dynamic models
were derived for arbitrary constraints (restricting one to six degrees of freedom). All robot elements
were considered rigid. The derived models enabled solving motion along with computing contact
forces. Friction between the robot and the environment was included (Problem 3). Collision
problems and the solution to nonelastic impact were discussed. Practical examples considered were
writing and assembly task.

After solving the dynamics of rigid robots, researchers attention turned to the elastic effects. The
problem of flexible links was considered first (Problem 4). Some of the initial research looked for
a simplified but fast solution of a flexible chain of the general structure,13,14 while others intended
to find a more exact model for some practical examples, i.e., single-link or two-link flexible arms.17,18

Almost all existing dynamic models for flexible multi-link arms are found in some specific dis-
cretization methods, such as lumped mass,13,14 assumed modes,19 or finite elements.20 A few
researchers considered the computational efficiency of the proposed procedures.21,22 Real-time
calculation has become significant in advanced control algorithms for flexible robots.23 Many
researchers considered the linear deformation and neglected the effects of coupling between the
components of deformation. Later research24,25 takes care of these problems, thus producing more
general models.

The next source of elastic effects is the transmission of torque. With electrical drives complex
transmission between motor and joint shaft is usually needed. It is necessary to reduce speed and
multiply torque. Thus, a kind of gear-box is present. Depending on their construction, gear-boxes
introduce smaller or larger elastic deformations. The deformation is specially expressed with a
harmonic-drive reducer, because elasticity is the essential property for its operation. If robot
construction is such that gravitational load is reduced by placing all motors close to the robot base,
then a system is needed to transmit torque and motion from the motor to the corresponding joint.
This may be a chain, belt, shaft, etc. Any of these systems introduces its elastic deformation
(Problem 5 in Figure 20.11). If the transmission is considered deformable, the joint shaft motion
becomes independent of motor motion and only relatively high stiffness makes these motions close
to each other. The number of DOFs is at least doubled. The initial results in this field were presented
by Spong26 and Potkonjak,27 the foundations for further research. A mathematical model was derived
to describe the dynamics of robots with elastic transmissions. The torque transmission included
the harmonic-drive reducer, gears, and chains. Research27 followed from practical work in robot
design. Special attention was paid to some practical problems in forming the control loop: Should
one measure the joint position or the motor angle? Generally speaking, the presence of unpowered
DOFs represented the main problem with control of such robots. Further works elaborated this
subject in more detail. One way to solve the tracking problem was presented in Kircanski, Timcenko,
and Vukobratović 28 and included the measurement of torque for feedback formation. The next step
in this research was to introduce constraints upon the motion of the end-effector, and thus, consider
elastic joint robots in contact tasks. Several approaches to simultaneous force and position control
in constrained robot systems with joint flexibility have been proposed in the literature.29-32

The elastic effects can be expressed with the robot support (Problem 6 in Figure 20.11). If
connections of robot arm and its support were considered deformable, or if the robot was placed
on a platform with pneumatic wheels, then oscillations would appear. However, these effects can
be included in the existing models of rigid system by adding passive DOFs with stiffness and
damping. A similar problem may appear on the environmental side. If the object to be grasped or
processed in some other way is connected to its support by means of deformable connections, then
oscillations arise (Problem 7). A dynamic environmental model is then needed.

With contact tasks, the most interesting deformation effects are expressed in the vicinity of
contact points (Problems 8 and 9). Two bodies in contact produce a force upon each other and the
force depends strongly on the elastic properties. For exact contact modeling, the elastodynamics
in the contact zone has to be taken into account. In most research contact deformation was
considered on the environment side only (Problem 8). The terminal link of the robot was assumed
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nondeformable. Such an approach can be justified in many industrial applications. It is due to the
fact that tools are generally harder than the objects upon which they are acting. The general
approach, however, would require the analysis of deformation on both sides of contact: environment
and robot (Problem 9). Such discussion is not needed for pure theoretical reasons. With some
applications, such as peg-in-hole assembly, it is a real situation. The same material is used for the
peg and for the object with the hole. Hence, it is likely that both bodies in contact will be deformed.
Most efforts in the field of contact deformation were made to create control strategies for contact
tasks.33-36 The main problem relates to the need to control position and force simultaneously.
Different approaches to solving the problem could be distinguished. In the first approach, robot
dynamics was considered in its rigid-body form and deformation in the contact zone was treated
through stiffness and damping.34 Because massless spring and damper were in question, no dynam-
ics of the environment exists. From the standpoint of environment modeling, a more exact method
has been proposed in Hogan.35 The suggested control strategy was called impedance control.
Environment was modeled by appropriate impedance. Thus, dynamics took place, but was restricted
to the linear model. Complete dynamics of environment, including nonlinear effects, is the topic
of position/force control of robot interacting with dynamic environment.36,37

Special discussion should be given about the collision (Problem 10). It is an always present
effect because no contact can be precisely made to avoid impact. The first study of impact with
robotic systems was given in Chumenko and Yuschenko.38 The nonelastic impact between a robot
and an object being grasped was solved. In Vukobratović and Potkonjak,14 the collision of robot
end-effector and a geometric constraint was elaborated. The impact was still considered plastic.
The effect of friction was included. Both of these studies followed the classical approach based on
the law of momentum. Another early result is Zheng and Hemami.39 The influence of friction on
body collision was discussed in detail in Keller40 and Stronge.41

Hurmuzlu and Marghitu42 considered a rigid-body collision of planar kinematic chains with
multiple contact points. A successful algorithm for the numerical integration of a system subject
to impacts was presented in Drenovac and Potknojak.43 Brogliato and Orhant44 formed the math-
ematical model of impulsive collision dynamics through the use of Schwartz’s distributions, then
studied the relationships between impulsive and continuous dynamic models, and analyzed the
difficulties associated with transition phase control. Acaccia et al.45 modeled the impact as a “black
box,” without a need to explicitly observe the compression and restitution phases. To achieve better
insight, the collision could be modeled through elastodynamics. One way to do this was by means
of the lumped mass approach.46

The final problem mentioned in this survey is redundancy. In early research in this field,
redundancy was considered a problem of kinematics (avoiding obstacles, avoiding singular posi-
tions, etc.). Later research, however, saw redundancy as a possibility to improve robot dynamic
performance.47,48 The biomechanical approach to the solution of redundancy of a humanoid robot
arm was proposed in Potknojak et al.49 Special kind of redundancy appears in so-called systems
with variable geometry.50,51 The mechanism is designed to have an augmented number of DOFs
(more than the kinematics of the task requires). However, this redundancy does not change end-
effector maneuvering capabilities. It changes the inner structure of the robot. For this reason, it is
called internal redundancy. The role of such redundancy is to avoid limitations imposed to actuators
(torque and speed limits) and thus improve robot dynamic capabilities.

Among various problems in robot dynamics, in this chapter we emphasized the following: motion
subject to geometric constraints, interaction with the dynamic environment, and effects of elastic
transmissions.

20.5.2 Dynamics of Robot in Constrained Motion

Here we discuss contact tasks considering robot environment as a geometric constraint imposed to
the motion of the end-effector. The discussion starts from the free motion of a rigid-body robot.
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The position of the chain, consisting of n links and n one-DOF joints (Figure 20.12), is defined by
means of the joint coordinates: q = [q1 … qn]T. In practical operation, joint coordinates are not
always suitable for use. Many tasks cannot be described in this way. For this reason, a new set of
coordinates is defined, the external coordinates. By this term we usually understand position and
orientation of the end-effector with respect to the immobile frame: Cartesian coordinates of the
robot tip (x, y, z) and yaw, pitch, and roll angles (θ, φ, ψ), as shown in Figure 20.12. The complete
external position vector is X = [xyzθφψ]T and has a dimension of six. For simplicity, we assume
that the robot has six joints and, thus, six joint coordinates (n = 6). In this way the elaboration of
redundancy is avoided but the intention of our discussion is not compromised. In the majority of
manipulation tasks, the external position is very suitable to apply. However, with contact tasks and
some other process operations, it is more appropriate if the position of the end-effector is defined
relative to the object being processed. Hence, we introduce a frame fixed to the object. Because
the object may be mobile, the new frame would incorporate the law of motion. We assume that
the object moves according to a given law that cannot be affected by robot action. This is necessary
if one intends to describe the environment as a geometric constraint. With respect to the new frame,
the position and the orientation of the end-effector are expressed by means of six coordinates: s =
[s1 … s6]T. We call them functional coordinates. Two examples are shown in Figure 20.13. Case
(a) represents the surface-type constraint appropriate for modeling the writing task. Case (b)
represents the peg-in-hole assembly task. Note that the order of coordinates in vector s may be
adopted arbitrarily, and we adopt the order suitable for the discussion that follows.

Each contact task consists of three phases: approaching, impact, and constrained motion. In the
approaching phase the end-effector moves toward the constraint. The motion is usually planned to

FIGURE 20.12 Internal position q = (q1, …, q6) and external position X = (x, y, z, θ, φ, ψ).

FIGURE 20.13 Two examples of functional coordinates.
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achieve zero-velocity contact and avoid impact. However, in a real situation, the always present
perturbations cause the collision. The impact occurs, producing sudden change in velocities. After
the impact phase, regular constrained motion starts. From the standpoint of modeling, the first
phase represents free motion. Both internal coordinates (q) and functional coordinates (s) are free.
All the discussion from the previous paragraphs holds and the dynamics is described by model
(20.22). The kinematics should be described by means of s-coordinates. The relation between
coordinates q and s can be expressed via a nonlinear function that can be nonstationary or stationary:

s = s(q, t) or s = s(q)  (20.83)

With the nonstationary problems, the explicit appearance of time t is due to the mobility of the s-
frame. For simplicity, we restrict our discussion to stationary problems (immobile frame s). The
second derivative of the latter relation from (20.83) produces

 (20.84)

where J = ∂s/∂q is the Jacobian matrix, and  is the adjoint vector.
Although all the coordinates from the set s are free and independent (in the approaching phase),

it is useful to separate them into two subsets, sf and sc, of dimensions 6 – m and m, respectively.
This separation follows from the nature of the constraint being approached, and will be explained
later. With vector s separated into two subvectors, relation (20.84) becomes

 (20.85)

 (20.86)

where the dimensions are Jf ((6 – m) × 6), Af (6 – m), Jc (m × 6), Ac (m).
The approaching phase ends when the end-effector touches the constraint, that is, when the

corresponding coordinate becomes zero. For the example from Figure 20.13a, the contact is estab-
lished when coordinate s6 (that is, z′) reduces to zero. The impact occurs in the instant of contact.
We find it more convenient to discuss impact dynamics later and elaborate the constrained motion
(the third phase) now. In this case, we assume that the contact has already been established and
the effects characteristic for the transient process have been finished. The imposed constraint
restricts some motion of the end effector. Let this restriction be expressed in terms of s-coordinates
by means of the condition

sc = 0.  (20.87)

For example, (a) from Figure 20.13, the separation of vector s should be: sf = [s1…s5]T, sc = [s6],
m = 1; while for example (b) separation sf = [s1 s2]T, sc = [s3 s4 s5 s6]T, m = 4, is applied. Thus, sc

represents the set of constrained coordinates (upper index “c” stands for “constrained”). In example
(a) there is only one such coordinate and accordingly one DOF is lost. In example (b), four DOFs
are lost. In a general case, the constrained robot has 6-m remaining DOFs and its motion is described
by means of 6 – m coordinates forming the vector sf (upper index “f” stands for “free”).

The restriction of motion results in reaction forces. Reaction will appear in the directions of the
constrained coordinates sc. Thus, there will be m independent components of reaction. Let these
components form the vector F. Reaction may be in the form of a force, if translation is constrained,
or in the form of a torque, if rotation is constrained. Figure 20.14 shows the reactions for the
examples defined in Figure 20.13.

˙̇ ( )˙̇ ( , ˙)s J q q A q q= +

A s q q= ∂ ∂( / ) ˙2 2 2

˙̇ ( )˙̇ ( , ˙)s J q q A q qf
f f= +

˙̇ ( )˙̇ ( , ˙)s J q q A q qc
c c= +
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The dynamic model (20.22) used for free motion should now be reformulated to incorporate the
reaction effects. Because F is the external force acting along directions sc, the model can be written
in the form:

 (20.88)

where Jc = ∂sc/∂q was introduced in (20.86). To solve the dynamics of the constrained motion,
model (20.88) has to be considered along with the condition (20.87). It is more suitable if the
constraint is expressed in differential form, and hence, (20.86) should be used, yielding

 (20.89)

Equations (20.88) and (20.89) complete the dynamic model. They consist of 6 + m scalar
equations and can be solved for 6 + m unknowns, accelerations  and reactions F.

Now, we return to the second phase of the contact task, the problem of impact. At the beginning,
we consider the simple surface-type constraint shown in Figures 20.13a and 20.14a. Impact occurs
when sc, that is, coordinate s6, becomes zero and the impact action is directed along this coordinate.
The impact may be more or less elastic and depending on that skipping could appear. To avoid
such a complex discussion, we restrict consideration to the nonelastic problem. In this case, the
end-effector will not leave the surface after the first contact, but move along it.

A slightly more complex problem would be constraint in the form of two surfaces. Although the
intention is to move the end-effector along the line of intersection, in a real situation collision with
one surface would happen first. Thus, two impacts would occur, one after the other. However, one
might neglect this effect and consider the two contacts as simultaneous. In this case a complex
impact has two components acting along the two constrained coordinates (dimension sc = 2). Further
generalization leads to the m-component constraint, that is, m restricted coordinates in vector sc.
The complex impact force F would have m components acting simultaneously. The example for
m = 4 is shown in Figures 20.13b and 20.14b. Note that in real motion the complex impact represents
a series of collisions with surfaces, but in the discussion that follows we neglect this effect. To
solve the dynamics of the impact, we integrate the model of constrained motion over the impact
interval (interval of transition). Let t′ denote the beginning of transition, that is, the instant when
sc reduces to zero and the contact occurs. Let t″ be the instant when transition effects may be
considered finished. The impact interval is then ∆t = [t′, t″]. For a geometric constraint and a
nonelastic impact, it is justified to consider this interval infinitely short, that is, ∆t → 0 and t″ →
t′. We integrate model (20.88) over this interval to obtain:

 (20.90)

FIGURE 20.14 Two examples of reactions.
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where  and . Equation (20.89) gives:

 (20.91)

Relations (20.90) and (20.91) describe the dynamics of impact. They represent the set of 6 + m
scalar equations and can be solved for  and F∆t.  is the change in joint velocity (6 components)
and F∆t is the impact impulse (m components). Note that F∆t ≠ 0 although ∆t → 0. This means
that F → ∞.

Let us briefly explain how we use the dynamic models to solve the three phases of the contact
task numerically. In the approaching phase, model (20.22) is integrated checking the value of sc.
When sc becomes zero, we turn to the impact model (20.90), (20.91) and solve the change in
velocity. With this new initial state we start solving the dynamics of the constrained motion by
integrating model (20.88) and (20.89).

20.5.3 Robot in Contact with Dynamic Environment

In the preceding paragraphs we established the contact problem as an important part of most robot
tasks in industry. Geometric constraints were one way to form the dynamic model for such systems.
The geometric constraints understood rigid-body contact and could be called “rigid constraints.”
However, with some theoretical and practical problems it was shown that this concept was not
justified. The dynamic behavior of the environment appeared to be important. This led first to the
concept of soft constraint and later to the idea of dynamic environment.

We do not intend to solve the general case of a robot interacting with a dynamic environment,
but only to illustrate the idea. We model the robot’s dynamics as if it were a rigid-body system
and the dynamics of the environment is reduced to deformation and elastodynamic effects in the
contact zone.

Let us consider the surface-type constraint (e.g., a writing task) shown in Figures 20.13a and
20.14a. Writing along the base has to be performed by applying some pressure force upon it. With
the rigid base, coordinate z′, that is, s6, was constrained. If the base is not considered as infinitely
rigid, but deformable, the motion in the perpendicular direction (negative s6) will be possible. Thus,
from the standpoint of kinematics there is no restriction on motion and no degrees of freedom are
lost. Some kind of restriction follows from the base dynamics. Its elastic properties will keep the
perpendicular motion small. Now the question arises of how to model environment dynamics (base,
in this example). To avoid too complex a discussion on elastodynamics, we adopt the lumped-mass
approach. Figure 20.15 shows the steps in the introduction of environment dynamics. Here, we
elaborate model (c). Model (d) will be mentioned only briefly.

The contact task, as explained before, consists of three phases. In the first, approaching the
surface, the problem of dynamic environment does not differ from the problem of geometric
constraint. Robot dynamics is integrated using q-coordinates, but at the same time, we use functional
s-coordinates to check whether the surface is reached. When s6 (that is, sc in a general case) reduces
to zero, contact is present. At that instant impact occurs, and we assume that it is completely
nonelastic. Impact is the second phase of the task. However, it is more convenient to explain the
dynamics of contact motion (the third phase) before discussing the impact.

Figure 20.16 shows contact of the robot end-effector and the elastic base. Robot dynamics is
described by model (20.88) and Equation (20.86) is used to express the relation between coordinates
q and sc. For the constraints of the surface-type, vector sc reduces to one component (coordinate
s6), and hence, we rewrite (20.88) and (20.86) as

 (20.92)

˙ ˙( )′ = ′q q t ˙ ˙( )′′ = ′′q q t

J q q J q qc c( ) ˙ ( ) ˙′ = − ′ ′∆

∆q̇ ∆q̇

H q q h q q J q FT( )˙̇ ( , ˙) ( )− = +τ 6
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and

 (20.93)

where dimensions of Jacobian matrix J6 are 1 × 6, and variables s6, F, and A6 are scalars. The
dynamics of the base can be described by means of Newton’s law applied to the equivalent mass me:

 (20.94)

(Note that s6 is negative all the time.) The set of Equations (20.92), (20.93), and (20.94) defines
the dynamics of contact motion. The set consists of 6 + 1 + 1 = 8 scalar equations and could be
solved for 8 scalar unknowns: 6- component  and scalars  and F.

We now return to impact. It has been assumed nonelastic and the integration of Equations (20.92)–
(20.94) over the impact interval ∆t → 0 yields

FIGURE 20.15 Modeling environment dynamics.

FIGURE 20.16 Elastodynamics of the base.
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 (20.95)

 (20.96)

 (20.97)

where q′ refers to the instant of contact (t′) and  and  represent the changes in velocities.
Equations (20.95), (20.96), and (20.97) define the impact dynamics and could be solved for ,

, and the impact impulse F∆t (since ∆t → 0, it has to be F → ∞ in order to keep F∆t ≠ 0).
If the environment is modeled as shown in Figure 20.15d, the entire deformation consists of the

external and internal components. Thus, one additional DOF appears. The next specific of this
model is that it does not require special impact treatment. The external deformation in the form of
a massless spring eliminates the impact, and thus, after approaching, the system immediately enters
the contact motion phase. One may say that the impact represents an initial period of contact motion
while transient effects are exhibited.

20.5.4 Effects of Elastic Transmissions

Here, we consider an open-chain mechanism (unconstrained motion) and concentrate on the prob-
lem of transmitting torque from motors to joints. With robots driven by electrical motors, it is very
common that motors are displaced from joints. They are moved toward the robot base to achieve
better statics (that is, to unload the arm). In such cases, a different transmission could be applied
between the motor and joint shafts. Some kind of a gear-box is usually present followed by chains,
belts, or some other elements. Such transmission is a source of deviation, because each element
may introduce its elastic deformation. Here, we assume that each joint has only one deformable
element in the transmission. To make the discussion clearer, let this elastic element be the harmonic-
drive reducer (HD). This will not compromise the generality because any other transmission element
may be modeled in the same manner.

Figure 20.17a shows joint Sj with its motor and transmission. Motor dynamics can be described
by mechanical Equation (20.62) and electrical Equation (20.63). If we neglect friction and induc-
tivity, then these two equations could be combined to give the form (20.70). This model is expressed
in terms of motor shaft angle θj. Mj that appears in the model represents motor output torque. The
model holds for each motor, j = 1, …, n. Dynamics of robot links are described by model (20.22)
and expressed in terms of joint coordinates qj, j = 1, …, n. Vector τ = [τ1 … τn]T that appears in
the model contains the input torques for robot links (joint shaft). In Section 20.3, when nonde-
formable transmission was assumed, the relation between the motor variables (θj, Mj) and joint
variables (qj, τj) was defined as linear. It was expressed by means of Equations (20.68) and (20.69).
The motion of the motor and that of the corresponding joint were dependent on each other. If
flexibility of transmission is introduced, the situation becomes rather different. Motor motion
(coordinate θj) and joint motion (coordinate qj) become kinematically independent and only high
stiffness keeps qj close to θj/Nj. This means that the overall number of DOFs is doubled. We now
concentrate on the concrete example of transmission shown in Figure 20.17. To generalize the
discussion, in addition to the elasticity we take care of transmission inertia. In the schematic
presentation (Figure 20.17b), the dashed line indicates the transmission stage. Its input torque is
Mj and the output is τj. If the moments of inertia of the gears are Ij′ and Ij″ and if other inertial
effects are neglected, dynamics can be described by means of equation

 (20.98)

H q q J q F tT( ) ˙ ( )′ = ′∆ ∆6

∆ ∆˙ ( ) ˙s J q q6 6= ′

m s F te∆ ∆6̇ = −

∆ q̇ ∆ ṡ6

∆q̇
∆ṡ6

( / )˙̇ / .′ + ′′ = −I I N M Nj j j j j j j
2 θ τ

8596Ch20Frame  Page 516  Tuesday, November 6, 2001  9:54 PM

© 2002 by CRC Press LLC



It should be noted that any other transmission element (chain, belt, etc.) can be modeled in the
same way, that is, as a combination of two rigid gears and a torsion spring element. In a generalized
case, the transmission may consist of several stages, one after the other. Each stage would be treated
as explained for the HD reducer in the present example. Inertia of gears may be expressed stronger
or weaker, especially if compared with transmission friction that we neglected. Let us return to
Figure 20.17. Joint torque τj follows from deformation of spring and hence

 (20.99)

where cj and dj denote torsion stiffness and damping coefficients.
The complete dynamic model now includes Equations (20.22) for links, (20.70), j = 1, …, n for

motors, and (20.98) and (20.99), j = 1, …, n for transmissions. The model can be integrated to give
motions θj and qj, j = 1, …, n.

Appendix: Calculation of Transformation Matrices

We consider the mechanism as a kinematic chain consisting of n rigid links interconnected by one-
DOF joint which can be either revolute or linear. The position of the chain is described by means

FIGURE 20.17 Deformable transmission.
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of coordinates q1, …, qn. The definition of revolute coordinate requires some additional discussion.
We start by referring to Figure 20.2 where the geometry of a link is defined and to Figure 20.3 that
introduces the coordinate for a revolute joint. However, this definition of coordinate is not general.
It requires that neither of vectors  or  is parallel with the axis  If it happens that one or
both vectors are parallel with the joint axis, then modification of the definition is needed. Let us
discuss this problem in detail.

If  then we say that there exists a specificity at the upper end of link j – 1 (the upper
end of a link is the end oriented to the next link; e.g., joint Sj represents the upper end of link j –
1). In this case, it is necessary to introduce an additional vector,  which is not parallel with

 and use it instead of  when defining the coordinate qj (Figure 20.18a,c). The condition that
 is not parallel with  is the only condition imposed in the choice of this additional vector.

However, it is most convenient to define it as a unit vector perpendicular to  
If  then we say that there exists a “specificity” at the lower end of the j-th link (joint Sj

represents the lower end of link j). In this case we introduce an additional vector,  which is
not parallel with  and use it instead of  when defining the coordinate qj (Figure 20.18b,c).

In this way, vectors  and  become the input data for the software that calculates the
position or kinematics of the robot chain. Vector  is expressed in frame j – 1, and vector 
in frame j.

We are now going to explain the calculation of the transformation matrix between the frame
fixed to link j and the frame fixed to link j – 1. It is called the relative transformation matrix and
is marked by Aj–1,j. The matrix is used to turn some vector from frame j to j – 1. If some vector 
is considered, then  can be calculated starting from :

 (20.100)

To calculate the transformation matrix we need three vectors linearly independent of each other.
We have to know the projections of these vectors to both frames, j – 1 and j. The calculation starts
with solving the transformation matrix that corresponds to the extended joint. The first vector of
the triple is . Its projections are known:  onto frame j – 1 and  onto frame j. We now introduce
vector  as a unit vector of axis “a’’ shown in Figure 20.19. Axis “a’’ defines the extended position
of the joint. The projections of the vector  onto frames j – 1 and j are

FIGURE 20.18 Definition of joint coordinate in the case of “specificity.”
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 (20.101)

Vector  is the second vector of the triple. The third vector is obtained as

 (20.102)

and has the projections

 (20.103)

Vectors , and  are perpendicular to each other and thus linearly independent. The relation
between projections onto two frames may be expressed (according to (20.100)) in the form:

 (20.104)

where the upper index “0” indicates the extended joint. Relations (20.104) can be united:

 (20.105)

where ej is a column vector of dimension 3 × 1 that contains the projections of vector , and
analogously holds for the other two vectors. From Equation (20.105), the transformation matrix of
the extended joint is obtained:

 (20.106)

Matrix  has three columns that represent the unit vectors of frame j expressed
in frame j – 1. Let us denote these columns by  and . Thus,

 (20.107)

FIGURE 20.19 Revolute joint: extended and rotated position.
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Up to this point, the extended joint was considered, that is, the joint coordinate was assumed to
be zero (qj = 0). To find the transformation matrix Aj–1, j that corresponds to some nonzero position
(qj ≠ 0), it is necessary to rotate each of the unit vectors,  about the axis  by the
angle qj. For the rotation, we use the Rodrigues’ formulae and mark the rotated vectors by :

 (20.108)

After rotation, unit vectors  define the new transformation matrix. Thus, matrix  that
corresponds to some given position qj is

 (20.109)

We now turn to the problem when two links (j – 1 and j) are connected by means of a linear
joint. Figure 20.4 explains the definition of a coordinate in such a joint. Since the relative motion
between two links is a translation, it is clear that the transformation matrix is constant. The matrix

 can be solved in a manner analogous to that used for revolute joints. If that procedure is
applied, from Figure 20.20a we conclude that for a linear joint the extended position is only fictive.
The rotation is performed by the constant angle . This angle has to be prescribed among the
geometrical parameters. Further, Figure 20.20b shows that with linear joints specificity is a very
common feature. Additional vectors (like ) are needed in such cases.

The discussion in this Appendix concerned the transformation between two adjacent frames.
However, we are often interested in transforming a vector from a link-fixed frame to the external
stationary one. Relation (20.9) introduced notation Aj for such transformation matrix:

 (20.110)

Moving the vector toward the robot support, from one frame to the other by using recursive
expression (20.100), we finally reach the stationary frame. Thus, the transformation from the link-
fixed frame to the external one is described by matrix

 (20.111)

FIGURE 20.20 Linear joint.
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