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19.1 Introduction

 

From a mechanical viewpoint, a robotic system generally consists of a locomotion apparatus (legs,
wheels) to move in the environment and a manipulation apparatus to operate on the objects present.
It is then important to distinguish between mobile robots and robot manipulators.

The mechanical structure of a robot manipulator consists of a sequence of links connected by
means of joints. Links and joints are usually made as rigid as possible to achieve high precision
in robot positioning. The presence of elasticity at the joint transmissions or the use of lightweight
materials for the links poses a number of interesting issues that lead to separating the study of
flexible robot manipulators from that of rigid robot manipulators. The latter are implicitly meant
by the term “robots” throughout this chapter.

This chapter surveys the fundamentals of robot kinematics. Basic mathematical tools such as
the rotation matrix, the unit quaternion, and the Euler angles are briefly recalled. They serve to
describe the orientation of the robot’s end effector that, together with the position can be expressed
as a function of the joint variables. This is the direct kinematics equation that is derived through
a systematic procedure based on the use of homogeneous transformations and the so-called Denavit-
Hartenberg convention. The inverse kinematics problem is considered and closed-form solutions
are found for simple geometries. Further, a treatment of differential kinematics based on the robot’s
Jacobian matrix, hereafter simply called the Jacobian (geometric or analytical) is provided. Specific
attention is paid to the occurrence of singularities or redundancy in the context of the differential
kinematics inversion. The material ends with the presentation of inverse kinematics algorithms with
special emphasis on the definition of the end-effector orientation error; both a pseudoinverse and
a transpose of the Jacobian are considered.
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19.2 Description of Orientation

 

Robot manipulation tasks are typically specified in terms of the position and orientation of an end-
effector frame with respect to a base frame. Position is uniquely described by the Cartesian
coordinates of the origin of the end-effector frame, whereas various representations of orientation
exist. Therefore, as a natural prelude to deriving the direct kinematics equation of a robot, some
basic concepts about the orientation of a rigid body in space are briefly recalled in the following.

 

19.2.1 Rotation Matrix

 

The location of a rigid body in space is typically described in terms of the (3 

 

×

 

 1) 

 

position vector

 

p

 

 and the (3 

 

×

 

 3) 

 

rotation matrix 

 

R

 

 describing the origin and the orientation of a frame attached
to the body with respect to a fixed reference frame, i.e.,

 

R 

 

= 

 

[

 

x  y  z

 

]

 

 (19.1)

where 

 

x

 

, 

 

y

 

,

 

 z

 

 are the unit vectors expressing the direction cosines of the axes of the body frame
with respect to the reference frame. It is straightforward to verify that the matrix 

 

R

 

 is orthogonal,
meaning that

 

R

 

T

 

 

 

R 

 

= 

 

I

 

 (19.2)

thus implying the useful result that the transpose of a rotation matrix is equal to its inverse, i.e.,

 

R

 

T 

 

= 

 

R

 

–

 

1

 

. Frame orientation is conventionally taken to be left-handed.
A rotation matrix possesses three equivalent geometrical meanings:

• It describes the mutual orientation between two coordinate frames (as above).

• It represents the coordinate transformation between the coordinates of a point expressed in
two different frames (with common origin).

• It is the operator that allows rotating a vector in the same coordinate frame.

Elementary rotations are those made about one of the coordinate axes,

 (19.3)

 (19.4)

 (19.5)

which denote the 

 

elementary rotation matrices

 

 with respect to the 

 

X,

 

 

 

Y, Z

 

 axes. These are useful
to describe rotations about an arbitrary axis in space, as shown below.

Rotation matrices between multiple frames — say frames 0, 1, 2 — can be nicely composed
according to the simple rule

 

0

 

R

 

2 

 

= 

 

0

 

R

 

1
1

 

R

 

2

 

 (19.6)
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where the notation 

 

j

 

R

 

i

 

 denotes the rotation matrix of frame 

 

i

 

 

 

with respect to frame 

 

j

 

, and successive
rotations are composed with respect to the axes of the current frame. Note also that 

 

i

 

R

 

j 

 

= (

 

j

 

R

 

i

 

)

 

T

 

.
Expressing a rotation of a given angle about an arbitrary axis in space is often desired. Let

 be the unit vector of a rotation axis with respect to the reference frame. To derive the
rotation matrix  expressing the rotation of an angle  about axis 

 

r

 

, it is convenient to
compose elementary rotations about the coordinate axes of the reference frame. The angle is positive
if the rotation is made counter-clockwise about axis 

 

r

 

.
As shown in Figure 19.1, a possible solution is obtained through the following sequence of

rotations:

• Align 

 

Z

 

 with 

 

r

 

, which is obtained as the sequence of a rotation by  about 

 

Z

 

 and a rotation
by  about 

 

Y

 

;

• Rotate by  about 

 

Z

 

;

• Realign with the initial direction of 

 

Z

 

, which is obtained as the sequence of a rotation by 
about 

 

Y

 

 and a rotation by –  about 

 

Z

 

.

The resulting rotation matrix is

 (19.7)

By using the following relations:

the rotation matrix of the 

 

angle/axis description 

 

in Equation (19.7) can be expressed as

 (19.8)

 

FIGURE 19.1

 

Rotation of a given angle about an arbitrary axis.
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where the standard abbreviations for  and  have been used. Equation (19.8) can be cast
in the more compact form

 (19.9)

where 

 

I

 

 is the (3 

 

×

 

 3) identity matrix and 

 

S 

 

( ) is the matrix operator performing the cross product
between two (3 

 

×

 

 1) vectors, i.e., 

 

S

 

(

 

a

 

)

 

b 

 

= 

 

a

 

 

 

×

 

 

 

b.

 

Although the axis can be arbitrary, the three components of 

 

r

 

 are constrained by the unit norm
condition

 

r

 

T

 

r 

 

= 1.  (19.10)

Also, it is clear that i.e., a rotation by  about –

 

r

 

 cannot be distinguished
from a rotation by  about 

 

r

 

; hence, for  the representation is not unique.
The angle and axis corresponding to a given rotation matrix

 (19.11)

are

 (19.12)

for  Instead, if  then it is necessary to refer directly to the particular expressions
attained by 

 

R

 

 and find the solving formulæ in the two cases: if  the unit vector is arbitrary
(no rotation has occurred), while if , the above nonuniqueness problem is encountered. This
drawback can be overcome by adopting a different four-parameter description, namely, the unit
quaternion introduced next.

 

19.2.2 Unit Quaternion

 

With reference to the above angle/axis description of orientation, the 

 

unit quaternion

 

 (viz. Euler
parameters) is defined as

 (19.13)

where

 (19.14)
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with  is called the scalar part of the quaternion while  is called the vector
part of the quaternion.

The constraint Equation (19.10) transforms into

 (19.15)

It is worth remarking that, different than the angle/axis description, a rotation by  about –

 

r

 

gives a vector part of the quaternion of the opposite sign from the one associated with a rotation
by  about 

 

r

 

, while the scalar part does not change. This solves the above nonuniqueness problem.
The rotation matrix corresponding to a given quaternion is

 (19.16)

On the other hand, the unit quaternion corresponding to a given rotation matrix Equation (19.11) is

 (19.17)

 

19.2.3 Euler Angles

 

Rotation matrices in general give a redundant description of frame orientation; in fact, they are
characterized by nine elements that are not independent but are related by six constraints due to
the orthogonality conditions in Equation (19.2). Even in the case of describing orientation in terms
of rotation about an arbitrary axis or a unit quaternion, a representation in terms of four parameters
is obtained. These components are not independent but are constrained by either condition (19.10)
or condition (19.15). This implies that there are actually three free parameters to describe orienta-
tion.

A minimal representation of orientation can be obtained by using a set of three 

 

Euler angles

 

 Among the 12 possible definitions of Euler angles, without loss of generality, the

 

XYZ

 

 representation is considered to lead to the rotation matrix

 (19.18)

The set of the Euler angles corresponding to a given rotation matrix (19.11) is

 (19.19)
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with  whereas the solution is

 (19.20)

with ; the function Atan2(

 

y

 

,

 

 x

 

) computes the arctangent of the ratio 

 

y

 

/

 

x

 

 but utilizes
the sign of each argument to determine to which quadrant the resulting angle belongs.

Solutions (19.19) and (19.20) degenerate when ; in this case, it is possible to determine
only the sum or difference of  and , i.e.,

 (19.21)

where the plus sign applies for  and the minus sign applies for .

 

19.3 Direct Kinematics

 

A robot manipulator consists of a kinematic chain of 

 

n 

 

+ 1 links connected by means of 

 

n

 

 joints.
Joints can essentially be of two types: 

 

revolute

 

 and 

 

prismatic

 

; complex joints can be decomposed
into these simple joints. Revolute joints are usually preferred because of their compactness and
reliability. One end of the chain is connected to the base link to which a suitable base frame is
attached, whereas an 

 

end-effector

 

 is connected to the other end and a suitable end-effector frame
is attached. The basic structure of a robot is the open kinematic chain that occurs when only one
sequence of links connects the two ends of the chain. Alternatively, a robot contains a closed
kinematic chain when a sequence of links forms a loop. In Figure 19.2, an open-chain robot
manipulator is illustrated with conventional representation of revolute and prismatic joints.

 

Direct kinematics

 

 of a robot consist of determining the mapping between the joint variables and
the position and orientation of the end-effector frame with respect to the base frame.

 

FIGURE 19.2

 

Schematic of an open-chain robot manipulator with a base frame and end-effector frame.
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19.3.1 Homogeneous Transformation

 

As discussed above, the position of a rigid body in space is expressed in terms of the position of
a suitable point on the body with respect to a reference frame (translation), while its orientation is
expressed in terms of the components of the unit vectors of a frame attached to the body (with
origin in the above point) with respect to the same reference frame (rotation).

The complete 

 

coordinate transformation

 

 between two frames (say frames 0, 1) is given by
composing the translation 

 

0

 

p

 

1

 

 

 

between the origins of the frames and the rotation 

 

0

 

R

 

1

 

 between the
axes of the frames into a (4 

 

×

 

 4) homogeneous transformation matrix

.  (19.22)

Similar to the composition of rotations expressed by (19.6), a sequence of coordinate transforma-
tions from frame 0 to frame 

 

n

 

 can be composed as in the product

 (19.23)

where 

 

i–

 

1

 

T

 

i

 

 denotes the homogeneous transformation expressing the position and orientation of
frame 

 

i

 

 with respect to frame 

 

i

 

 –

 

 1. The relationship (19.23) is the basic tool for deriving the direct
kinematics equation of a robot.

 

19.3.2 Denavit-Hartenberg Convention

 

An effective procedure for computing the direct kinematics function for a general robot is based
on the so-called modified 

 

Denavit-Hartenberg

 

 convention. According to this convention, a coordi-
nate frame is attached to each link of the chain and the overall transformation matrix from link 0
to link 

 

n

 

 is derived by composition of transformations between consecutive frames. With reference
to Figure 19.3, let joint 

 

i

 

 connect link i – 1 to link i, where the links are assumed to be rigid; frame
i is attached to link i and can be defined as follows:

• Choose axis Zi aligned with the axis of joint i.

• Choose axis Xi along the common normal to axes Zi and Zi+1 with direction from joint i to
joint i + 1.

• Choose axis Yi to complete a right-handed frame.

FIGURE 19.3 Kinematic parameters with modified Denavit-Hartenberg convention.
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Once the link frames have been established, the position and orientation of frame i with respect
to frame i – 1 are completely specified by the following kinematic parameters.

 Angle between Zi–1 and Zi about Xi–1 measured counter-clockwise
 Distance between Zi–1 and Zi along Xi–1

 Angle between Xi–1 and Xi about Zi measured counter-clockwise
di Distance between Xi–1 and Xi along Zi

Let   denote the homogeneous transformation matrix expressing the
rotation (translation) about (along) axis K by an angle (distance) δ. Then, the coordinate trans-
formation of frame i with respect to frame i – 1 can be expressed in terms of the above four
parameters by the matrix

 (19.24)

where i–1Ri is the (3 × 3) matrix defining the orientation of frame i with respect to frame i – 1, and
i–1pi is the (3 × 1) vector defining the origin of frame i with respect to frame i – 1.

Dually, the transformation matrix defining frame i – 1 with respect to frame i is given by

 (19.25)

Two of the four parameters (  and αi) are always constant and depend only on the size and
shape of link i. Of the remaining two parameters, only one is variable (degree of freedom) depending
on the type of joint that connects link i – 1 to link i. If qi denotes the joint i variable, then it is

 (19.26)

where  i.e.,

•  if joint i is revolute ( ),

•  if joint i is prismatic (qi = di).

In view of (19.26), the equation

 (19.27)
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gives the constant parameter at each joint to add to αi and .
The above procedure does not yield a unique definition of frames 0 and n that can be chosen

arbitrarily. Also, in all cases of nonuniqueness in the definition of the frames, it is convenient to
make as many link parameters zero as possible, because this will simplify kinematics computation.
A number of remarks are in order.

• A simple choice to define frame 0 is to take it coincident with frame 1 when q1 = 0; this
makes α1 = 0 and  and 

• A similar choice for frame n is to take Xn along Xn–1 when qn = 0; this makes 

• If joint i is prismatic, the direction of Zi is fixed while its location is arbitrary; it is convenient
to locate Zi either at the origin of frame i – 1  or at the origin of frame i + 1 

• When the joint axes i and i + 1 are parallel, it is convenient to locate Xi to achieve either
di = 0 or di+1 = 0 if either joint is revolute.

In view of (19.23), through the composition of the individual link transformations, the coordinate
transformation describing the position and orientation of frame n with respect to frame 0 is given by

 (19.28)

where q denotes the (n × 1) vector of joint variables. To derive the direct kinematics, two further
constant transformations have to be introduced; namely, the transformation from the base frame b
to frame 0 (bT0) and the transformation from frame n to the end-effector frame e (nTe), i.e.,

 (19.29)

where the normal, sliding, and approach unit vectors n, s, a have been formally introduced
(Figure 19.2). Subscripts and superscripts can be omitted when the relevant frames are clear from
the context.

The “modified” Denavit-Hartenberg convention stems from the fact that, in the “classical”
convention, axis Zi is aligned with the axis of joint i + 1 and the kinematic parameters differ
accordingly.

An example of an open-chain robot is the anthropomorphic robot.
With reference to the frames illustrated in Figure 19.4, the Denavit-Hartenberg parameters are

specified in Table 19.1.
Computing the transformation matrices in (19.24) and composing them as in (19.28) gives

 (19.30)

where

 (19.31)
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for the position, and

 (19.32)

FIGURE 19.4 Anthropomorphic robot with frame assignment.
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 (19.33)

 (19.34)

for the orientation, where , and .

19.3.3 Joint Space and Task Space

If a task has to be assigned to the end-effector, it is necessary to specify both the end-effector’s
position and orientation. This is easy for the position pe. However, specifying the orientation through
the unit vector triple (ne, se, ae) is difficult, because their nine components must be guaranteed to
satisfy the orthonormality constraints imposed by (19.2). Even with a four-parameter description
of the orientation, one constraint in the form of either (19.10) or (19.15) should be satisfied.

On the other hand, if a minimal representation is adopted in terms of the Euler angles describing
the orientation of the end-effector frame with respect to the base frame, a suitable (m × 1) vector
can be considered as

 (19.35)

where pe describes the end-effector position and  its orientation. This representation of position
and orientation allows the description of the end-effector task in terms of a number of inherently
independent parameters. The vector x is defined in the space in which the robot task is specified;
hence, this space is typically called task space (operational space). The dimension of the task space
is at most m = 6, because three coordinates specify position and three angles specify orientation.
Nevertheless, depending on the geometry of the task, a reduced number of task space variables
may be specified; for instance, for a planar robot it is m = 3, because two coordinates specify
position and one angle specifies orientation.

On the other hand, the joint space (configuration space) denotes the space in which the (n × 1)
vector of joint variables q is defined. Taking into account the dependence of position and orientation
from the joint variables, the direct kinematics equation can be written in a form other than (19.24),
i.e.,

x = k(q).  (19.36)

It is worth noticing that the explicit dependence of the function k(q) from the joint variables for
the orientation components is not available except for simple cases. In fact, on the most general
assumption of a six-dimensional task space (m = 6), the computation of the three components of
the function  cannot be performed in closed form but goes through the computation of the
elements of the rotation matrix.
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The notion of joint space and task space naturally allows introducing the concept of kinematic
redundancy. This occurs when the dimension of the task space is smaller than the dimension of
the joint space (m < n). Redundancy is a concept relative to the task assigned to the robot; a robot
can be redundant with respect to a task and nonredundant with respect to another, depending on
the number of task space variables of interest.

For instance, a three-degree-of-freedom planar robot becomes redundant if end-effector orien-
tation is of no concern (m = 2, n = 3). Yet, the typical example of redundant robot is the human
arm that has seven degrees of freedom: three in the shoulder, one in the elbow, and three in the
wrist, without considering the degrees of freedom in the fingers (m = 6, n = 7).

19.4 Inverse Kinematics

The direct kinematics equation, either in the form (19.24) or in the form (19.36), establishes the
functional relationship between the joint variables and the end-effector position and orientation.
Inverse kinematics concerns the determination of the joint variables q corresponding to a given
end-effector position pe and orientation Re. The solution to this problem is of fundamental impor-
tance in order to translate the specified motion, naturally assigned in the task space, into the
equivalent joint space motion that allows execution of the desired task.

With regard to the direct kinematics Equation (19.24), the end-effector position and rotation
matrix are uniquely computed, once the joint variables are known. In general, this cannot be said
for Equation (19.36), because the Euler angles are not uniquely defined. On the other hand, the
inverse kinematics problem is much more complex for the following reasons.

• The equations to solve are general nonlinear equations for which it is not always possible
to find closed-form solutions.

• Multiple solutions may exist.

• Infinite solutions may exist, e.g., in the case of a kinematically redundant robot.

• There might not be admissible solutions, in view of the robot kinematic structure.

Of course, the existence of solutions is guaranteed if the given end-effector position and orien-
tation belong to the robot workspace.

On the other hand, the problem of multiple solutions depends not only on the number of degrees
of freedom but also on the Denavit-Hartenberg parameters; in general, the greater the number of
nonnull parameters, the greater the number of admissible solutions. For a six-degrees-of-freedom
robot without mechanical joint limits, in general up to 16 admissible solutions exist. This occurrence
demands some criteria to choose among admissible solutions.

The computation of closed-form solutions requires either algebraic intuition to find those sig-
nificant equations containing the unknowns, or geometric intuition to discover those significant
points on the structure for which it is convenient to express position and orientation. Or, in all those
cases when there are no — or it is difficult to find — closed-form solutions, it might be appropriate
to resort to numerical solution techniques. These clearly have the advantage of being applicable to
any kinematic structure, but generally they do not allow computation of all admissible solutions.

19.4.1 Closed-Form Solutions
Most of the existing robots are kinematically simple, because they are typically formed by an arm
(three or more degrees of freedom) which provides mobility and by a wrist which provides dexterity
(three degrees of freedom). This choice is partially motivated by the difficulty of finding solutions
to the inverse kinematics problem in the general case. In particular, a six-degrees-of-freedom robot
has closed-form inverse kinematics solutions if three consecutive revolute joint axes intersect at a
common point. This situation occurs when a robot has a so-called spherical wrist that is charac-
terized by
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 (19.37)

with sin  and sin  so as to avoid parallel axes (degenerate robot). In that case, it is
possible to divide the inverse kinematics problem into two subproblems, because the solution for
the position is decoupled from that for the orientation.

In the case of a three-degrees-of-freedom arm, for given end-effector position 0pe and orientation
0Re, the inverse kinematics can be solved according to the following steps:

• Compute the wrist position 0p4 from 0pe;

• Solve inverse kinematics for (q1, q2, q3);

• Compute 0R3 (q1, q2, q3);

• Compute 3R6(q4, q5, q6) = 3R0 0Re eR6;

• Solve inverse kinematics for (q4, q5, q6).

Therefore, on the basis of this kinematic decoupling, it is possible to solve the inverse kinematics
for the arm separately from the inverse kinematics for the spherical wrist.

Consider the anthropomorphic robot in Figure 19.4, whose direct kinematics was given in (19.30).
Finding the vector of joint variables q corresponding to given end-effector position 0pe and orien-
tation 0Re is desired; without loss of generality, assume that 0pe = 0p6 and 6Re = I.

Observing that 0p6 = 0p4, the first three joint variables can be solved from (19.31) which can be
rewritten as

 (19.38)

From the first two components of (19.38), it is

 (19.39)

Notice that another solution is

 (19.40)

The second joint variable can be found by squaring and summing the first two components of
(19.38), i.e.,

 (19.41)

then, squaring the third component and summing it to (19.41) lead to the solution

 (19.42)
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Substituting q3 in (19.41), taking the square root thereof and combining the result with the third
component of (19.38) lead to a system of equations in the unknowns s2 and c2; its solution can be
found as

and thus the second joint variable is

 (19.43)

Notice that four admissible solutions are obtained according to the values of q1, q2, q3, namely,
shoulder-right/elbow-up, shoulder-left/elbow-up, shoulder-right/elbow-down, shoulder-left/elbow-
down.

To solve for the three joint variables of the wrist, the following procedure can be used. Given
the matrix

 (19.44)

the matrix 0R3 can be computed from the first three joint variables via (19.24), and thus the following
equation is to be considered:

 (19.45)

The elements of the matrix on the right-hand side of (19.45) have been obtained by computing 3R6

via (19.24), whereas the elements of the matrix on the left-hand side of (19.45) can be computed
as 3R0 0R6 with 0R6 as in (19.44), i.e.,

 (19.46)

the other elements and can be computed from (19.46) by replacing

with and , respectively.

At this point, inspecting (19.45) reveals that from the elements [1, 3] and [3, 3], q4 can be
computed as
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 (19.47)

Then, q5 can be computed by squaring and summing the elements [1, 3] and [3, 3], and from the
element [2, 3] as

 (19.48)

Finally, q6 can be computed from the elements [2, 1] and [2, 2] as

 (19.49)

It is worth noticing that another set of solutions is given by the triplet

 (19.50)

 (19.51)

 (19.52)

Notice that both sets of solutions degenerate when 3ax = 3az = 0; in this case, q4 is arbitrary and
simpler expressions can be found for q5 and q6.

In conclusion, four admissible solutions have been found for the arm and two admissible solutions
have been found for the wrist, resulting in a total of eight admissible inverse kinematics solutions
for the anthropomorphic robot with a spherical wrist.

19.5 Differential Kinematics

The (3 × 1) vector  of linear velocity of a rigid body in space is given by the time derivative of
the position vector, while the (3 × 1) vector ω of angular velocity can be defined through the time
derivative of the rotation matrix in the form

 (19.53)

With reference to the other descriptions of orientation, the relationship between the angular velocity
and the time derivative of the unit quaternion is

 (19.54)

which is known as the quaternion propagation rule, whereas that between the angular velocity and
the time derivative of the Euler angles is

 (19.55)
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where  depends on the particular choice of Euler angles.
The mapping between the (n × 1) vector of joint velocities  and the (6 × 1) vector of end-

effector (linear and angular) velocities  is established by the differential kinematics equation

 (19.56)

where J(q) is the (6 × n) Jacobian matrix. The computation of this matrix usually follows a geometric
procedure that is based on computing the contributions of each joint velocity to the linear and
angular end-effector velocities. Hence, J(q) can be termed the geometric Jacobian of the robot.

19.5.1 Geometric Jacobian

In view of simple geometry, the velocity contributions of each joint to the linear and angular
velocities of link n give the following relationship:

 (19.57)

where zk is the unit vector of axis Zk and pkn denotes the vector from the origin of frame k to the
origin of frame n. Notice that Jn is a function of q through the vectors zk and pkn that can be
computed on the basis of direct kinematics.

The geometric Jacobian can be computed with respect to any frame i; in that case, the k-th
column of iJn is given by

 (19.58)

where kpn = kpkn. In view of the expression of kzk = [0 0 1], Equation (19.58) can be rewritten as

 (19.59)

where kpnx and kpny are the x and y components of kpn. A number of remarks are in order.

• The transformation of the Jacobian from frame i to a different frame l can be obtained as

 (19.60)

• The Jacobian relating the end-effector velocity to the joint velocities can be computed either
by using (19.57) and replacing pkn with pke, or by using the relationship
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 (19.61)

A Jacobian iJn can be decomposed as the product of three matrices, where the first two are full-
rank, while the third one has the same rank as iJn but contains simpler elements to compute. To
achieve this, the Jacobian of link n can be expressed as a function of a generic Jacobian

 (19.62)

giving the velocity of a frame fixed to link n attached instantaneously to frame h. Then Jn can be
computed via (19.61) as

 (19.63)

which can be expressed with respect to frame i, giving

 (19.64)

Combining (19.60) with (19.64) yields the result that the matrix lJn can be computed as the product
of three matrices

 (19.65)

where remarkably the first two matrices are full-rank. In general, the values of h and i leading to
the Jacobian iJn,h of simplest expression are given by

Hence, for a robot with six degrees of freedom, the matrix 3J6,4 is expected to have the simplest
expression; if the wrist is spherical (p46 = 0), then the second matrix in (19.65) is identity and 3J6,4 = 3J6.

As an example, the geometric Jacobian for the anthropomorphic robot in Figure 19.4 can be
computed on the basis of the matrix

 (19.66)
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19.5.2 Analytical Jacobian

If the end-effector position and orientation are specified in terms of a minimum number of param-
eters in the task space as in (19.36), it is possible to also compute the Jacobian matrix by direct
differentiation of the direct kinematics equation, i.e.,

 (19.67)

where the matrix  is termed analytical Jacobian.
The relationship between the analytical Jacobian and the geometric Jacobian is expressed as

 (19.68)

where  is the transformation matrix defined in (19.55) that depends on the particular set of
Euler angles used to represent end-effector orientation.

It can be easily recognized that the two Jacobians are in general different; note, however, that
the two coincide for the positioning part. Concerning their use, the geometric Jacobian is adopted
when physical quantities are of interest, while the analytical Jacobian is adopted when task space
quantities are the focus. It is always possible to pass from one Jacobian to the other, except when
the transformation matrix is singular. The orientations at which the determinant of  vanishes
are called representation singularities of . For instance, with reference to the XYZ representation
in (19.18), the transformation matrix is

 (19.69)

T becomes singular at the representation singularities  notice that, in these configurations,
it impossible to describe an arbitrary angular velocity with a set of Euler angle time derivatives. It
should be remarked that each of the other Euler angle descriptions suffers from the occurrence of
two representation singularities.

19.5.3 Singularities

The differential kinematics Equation (19.56) defines a linear mapping between the vector of joint
velocities  and the vector of end-effector velocities  The Jacobian is in general a function of
the robot configuration q. Those configurations at which J is rank-deficient are called kinematic
singularities.

The simplest means to find singularities is to compute the determinant of the Jacobian matrix.
For instance, for the above Jacobian in (19.66) it is

 (19.70)
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when links 2 and 3 are aligned; shoulder singularity

d4s23 – 3c2 = 0

when the origin of frame 4 is along axis Z0; and wrist singularity

s5 = 0

when axes Z4 and Z6 are aligned. Notice that elbow singularity is not troublesome because it occurs
at the boundary of the robot workspace . Shoulder singularity is characterized in the
task space and thus it can be avoided when planning an end-effector trajectory. Instead, wrist
singularity is characterized in the joint space , and thus it is difficult to predict when
planning an end-effector trajectory.

An effective tool for analyzing the linear mapping from the joint velocity space into the task
velocity space defined by (19.56) is offered by the singular value decomposition (SVD) of the
Jacobian matrix is given by

 (19.71)

where U is the (m × m) matrix of the output singular vectors ui, V is the (n × n) matrix of the input
singular vectors  and  is the (m × n) matrix whose (m × m) diagonal submatrix S
contains the singular values σi of the matrix J. If r denotes the rank of J, the following properties
hold:

•

•

•

The null space N(J) is the set of joint velocities that yield null task velocities at the current
configuration; these joint velocities are termed null space joint velocities. A base of N(J) is given
by the (n – r) last input singular vectors, which represent independent linear combinations of the
joint velocities. Hence, one effect of a singularity is to increase the dimension of N(J) by introducing
a linear combination of joint velocities that produce a null task velocity.

The range space R(J) is the set of task velocities that can be obtained as a result of all possible
joint velocities; these task velocities are termed feasible space task velocities. A base of R(J) is
given by the first r output singular vectors that represent independent linear combinations of the
single components of task velocities. Accordingly, another effect of a singularity is to decrease the
dimension of R(J) by eliminating a linear combination of task velocities from the space of feasible
velocities.

The singular value decomposition (19.71) shows that the i-th singular value of J can be viewed
as a gain factor relating the joint velocity along the  direction to the task velocity along the ui

direction. When a singularity is approached, the r-th singular value tends to zero and the task
velocity produced by a fixed joint velocity along  is decreased proportionally to sr . At the singular
configuration, the joint velocity along  is in the null space and the task velocity along ur becomes
infeasible.

In the general case, the joint velocity has components in any  direction, and the resulting task
velocity can be obtained as a combination of the single components along each output singular
vector direction.
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19.6 Differential Kinematics Inversion

The differential kinematics equation, in terms of either the geometric or the analytical Jacobian,
establishes a linear mapping between joint space velocities and task space velocities, even if the
Jacobian is a function of joint configuration. This feature suggests the use of the differential
kinematics Equation (19.56) to solve the inverse kinematics problem.

Assume that a task space trajectory is given (x(t),  The goal is to find a feasible joint space
trajectory  that reproduces the given trajectory. Joint velocities can be obtained by solving
the differential kinematics equation for  at the current joint configuration; then, joint positions
q(t) can be computed by integrating the velocity solution over time with known initial conditions.
This approach is based on knowledge of the robot Jacobian and is applicable to any robot structure,
on the condition that a suitable inverse for the matrix J can be found.

19.6.1 Pseudoinverse

With reference to the geometric Jacobian, the basic inverse solution to (19.56) is obtained by using
the pseudoinverse  of the matrix J; this is a unique matrix satisfying the Moore-Penrose
conditions

 (19.72)

or, alternatively, the equivalent conditions

 (19.73)

The inverse solution can then be written as

 (19.74)

that provides a least-squares solution with minimum norm to Equation (19.56); in detail, solution
(19.74) satisfies the condition

 (19.75)

of all  that fulfill

 (19.76)

If the Jacobian matrix is full-rank, the right pseudoinverse of J can be computed as

 (19.77)
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and (19.74) provides an exact solution to (19.56). Further, if J square, the pseudoinverse (19.77)
reduces to the standard inverse Jacobian matrix J –1.

To gain insight into the properties of the inverse mapping described by (19.74), it is useful to
consider the singular value decomposition (19.71) of J, and thus

 (19.78)

where r denotes the rank of J. The following properties hold:

•

•

•

The null space  is the set of task velocities that yields null joint space velocities at the
current configuration; these task velocities belong to the orthogonal complement of the feasible
space task velocities. Hence, one effect of the pseudoinverse solution (19.74) is to filter the infeasible
components of the given task velocities while allowing exact tracking of the feasible components;
this is due to the minimum norm property (19.75).

The range space  is the set of joint velocities that can be obtained as a result of all possible
task velocities. Because these joint velocities belong to the orthogonal complement of the null
space joint velocities, the pseudoinverse solution (19.74) satisfies the least-squares condition
(19.76).

If a task velocity is assigned along ui, the corresponding joint velocity computed via (19.74) lies
along υυυυi and is magnified by the factor 1/σi. When a singularity is approached, the r-th singular
value tends to zero and a fixed task velocity along ur requires large joint velocities. At a singular
configuration, the ur direction becomes infeasible and υυυυr adds to the set of null space velocities of
the robot.

19.6.2 Redundancy

For a kinematically redundant robot a nonempty null space N(J) exists which is available to set
up systematic procedures for an effective handling of redundant degrees of freedom. The general
inverse solution can be written as

 (19.79)

which satisfies the least-squares condition (19.76) but loses the minimum norm property (19.75)
by virtue of the addition of the homogeneous term . The matrix  is a projector
of the joint vector  onto N(J).

In terms of the singular value decomposition, solution (19.79) can be written in the form

 (19.80)

Three contributions can be recognized in (19.80), namely, the least-squares joint velocities, the
null space joint velocities due to singularities (if r < m), and the null space joint velocities due to
redundant degrees of freedom (if m < n).

This result is of fundamental importance for redundancy resolution, because solution (19.79)
evidences the possibility of choosing the vector  to exploit the redundant degrees of freedom.
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In fact, the contribution of  is to generate null space motions of the structure that do not alter
the task space configuration but allow the robot to reach more dexterous postures for the execution
of the given task.

A typical choice of the null space joint velocity vector is

 (19.81)

with  is a scalar objective function of the joint variables, and  is the vector
function representing the gradient of w. In this way, locally optimizing w in accordance with the
kinematic constraint expressed by (19.56) is sought. Usual objective functions are

• The manipulation measure defined as

 (19.82)

which vanishes at a singular configuration, and thus redundancy may be exploited to escape
singularities.

• The distance from mechanical joint limits defined as

 (19.83)

where qiM (qim) denotes the maximum (minimum) limit for qi and  the middle of the joint
range, and thus redundancy may be exploited to keep the robot from joint limits.

• The distance from an obstacle defined as

 (19.84)

where o is the position vector of an opportune point on the obstacle and p is the position
vector of the closest robot point to the obstacle, and thus redundancy may be exploited to
avoid collisions with obstacles.

19.6.3 Damped Least-Squares Inverse

In the neighborhood of singular configurations the use of a pseudoinverse is not adequate and a
numerically robust solution is achieved by the damped least-squares inverse technique based on
the solution to the modified differential kinematics equation

 (19.85)

in place of Equation (19.56); in (19.85) the scalar  is the so-called damping factor. Note that
when  Equation (19.85) reduces to (19.56).

The solution to (19.85) can be written in either of the equivalent forms

 (19.86)
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 (19.87)

The computational load of (19.86) is lower than that of (19.87), being usually  Let

 (19.88)

indicate the damped least-squares inverse solution computed with either of the above forms. Solution
(19.88) satisfies the condition

 (19.89)

that gives a trade-off between the least-squares condition (19.76) and the minimum norm condition
(19.75). In fact, condition (19.89) accounts for both accuracy and feasibility in choosing the joint
space velocity  required to produce the given task space velocity υυυυ. In this regard, it is essential
to select a suitable value for the damping factor; small values of  give accurate solutions but low
robustness in the neighborhood of singular configurations, while large values of  result in low
tracking accuracy even if feasible and accurate solutions are possible.

Resorting to the singular value decomposition, the damped least-squares inverse solution (19.88)
can be written as

 (19.90)

Remarkably, it is

•

•

that is, the structural properties of the damped least-squares inverse solution are analogous to those
of the pseudoinverse solution.

It is clear that with respect to the pure least-squares solution (19.74) the components for which
 are not influenced by the damping factor, because in this case it is

 (19.91)

On the other hand, when a singularity is approached, the smallest singular value tends to zero while
the associated component of the solution is driven to zero by the factor  this progressively
reduces the joint velocity to achieve near-degenerate components of the commanded task velocity.
At the singularity, solutions (19.88) and (19.74) behave identically as long as the remaining singular
values are significantly larger than the damping factor. Note that an upper bound of  is set on
the magnification factor relating the task velocity component along ui to the resulting joint velocity
along υυυυi; this bound is reached when 

The damping factor  determines the degree of approximation introduced with respect to the
pure least-squares solution. Then, using a constant value for  may turn out to be inadequate for
obtaining good performance over the entire robot workspace. An effective choice is to adjust  as
a function of some measure of closeness to the singularity at the current configuration of the robot.
To this purpose, manipulability measures or estimates of the smallest singular value can be adopted.
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Remarkably, currently available microprocessors even allow real-time computation of full singular-
value decomposition.

A singular region can be defined on the basis of the smallest singular value estimate of J. Outside
the region the exact solution is used, while inside the region a configuration-varying damping factor
is introduced to obtain the desired approximate solution. The factor must be chosen so that continuity
of joint velocity  is ensured in the transition at the border of the singular region.

Without loss of generality, for a six-degree-of-freedom robot, the damping factor can be selected
according to the following law:

 (19.92)

where  is the smallest singular value estimate, and  defines the size of the singular region; the
value of  is at the user’s disposal to suitably shape the solution in the neighborhood of a
singularity.

Equation (19.92) requires computation of the smallest singular value. To avoid a full singular-
value decomposition, we can resort to a recursive algorithm to find an estimate of the smallest
singular value. Suppose that an estimate  of the last input singular vector is available, so that

 and . This estimate is used to compute the vector  from

 (19.93)

Then the square of the estimate  of the smallest singular value can be found as

 (19.94)

while the estimate of υυυυ6 is updated using

 (19.95)

The above estimation scheme is based on the assumption that υυυυ6 is slowly rotating, which is
normally the case. However, if the robot is close to a double singularity (e.g., a shoulder and a
wrist singularity for the anthropomorphic robot), the vector υυυυ6 will instantaneously rotate if the
two smallest singular values cross. The estimate of the smallest singular value will then track 
initially, before  converges again to υυυυ6. Therefore, it is worth extending the scheme by estimating
not only the smallest but also the second smallest singular value. Assume that the estimates  and

 are available and define the matrix

 (19.96)

With this choice, the second smallest singular value of J plays in
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At this point, suppose that  is an estimate of υυυυ5 so that  and  This estimate is
used to compute  from (19.97). Then, an estimate of the square of the second smallest singular value
of J is found from

 (19.98)

and the estimate of υυυυ5 is updated using

 (19.99)

On the basis of this modified estimation algorithm, crossing of singularities can be effectively
detected; also, by switching the two singular values and the associated estimates  and  the
estimation of the smallest singular value will be accurate even when the two smallest singular
values cross.

19.6.4 User-Defined Accuracy

The above damped least-squares inverse method achieves a compromise between accuracy and
robustness of the solution. This is performed without specific regard to the components of the
particular task assigned to the robot’s end-effector. The user-defined accuracy strategy based on
the weighted, damped, least-squares inverse method allows discriminating between directions in
the task space where higher accuracy is desired and directions where lower accuracy can be
tolerated. This is the case, for instance, of spot welding or spray painting in which the tool angle
about the approach direction is not essential to the fulfillment of the task.

Let a weighted end-effector velocity vector be defined as

 (19.100)

where W is the (m × m) task-dependent weighting matrix taking into account the anisotropy of the
task requirements. Substituting (19.100) into (19.56) gives

 (19.101)

where  It is worth noticing that if W is full-rank, solving (19.56) is equivalent to solving
(19.101), but with different conditioning of the system of equations to solve. This suggests selecting
only the strictly necessary weighting action to avoid undesired ill-conditioning of 

Equation (19.101) can be solved by using the weighted, damped, least-squares inverse technique,
i.e.,

 (19.102)

Again, the singular value decomposition of the matrix  is helpful, i.e.,

 (19.103)

and the solution to (19.102) can be written as
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 (19.104)

It is clear that the singular values  and the singular vectors  and  depend on the choice of
the weighting matrix W. While this has no effect on the solution  as long as , close to
singularities where , for some r < m, the solution can be shaped by properly selecting the
matrix W.

For a six-degree-of-freedom robot with a spherical wrist, it is worthwhile to devise special
handling of the wrist singularity, because such a singularity is difficult to predict at the planning
level in the task space. It can be recognized that at the wrist singularity only two components of
the angular velocity vector can be generated by the wrist itself. The remaining component might
be generated by the inner joints, although at the expense of loss of accuracy along some other task
space directions. For this reason, lower weight should be put on the angular velocity component
that is infeasible to the wrist. For the anthropomorphic robot, this is easily expressed in the frame
attached to link 4; let R4 denote the rotation matrix describing orientation of this frame with respect
to the base frame so that the infeasible component is aligned with the X-axis. Then the weighting
matrix can be chosen as

 (19.105)

Similar, to the choice of the damping factor as in (19.92), the weighting factor w is selected
according to the following expression:

 (19.106)

where wmin > 0 is a design parameter.

19.7 Inverse Kinematics Algorithms

The differential kinematics equation has been utilized above to solve for joint velocities. Open-
loop reconstruction of joint variables through numerical integration unavoidably leads to solution
drift and then to task space errors. This drawback can be overcome by devising a closed-loop
inverse kinematics algorithm based on the task space error between the desired and actual end-
effector locations xd and x, i.e., e = xd – x(q). It is also worth considering the differential kinematics
equation in the form (19.67) where the definition of the task error has required consideration of
the analytical Jacobian Ja in lieu of the geometric Jacobian.

19.7.1 Jacobian Pseudoinverse

The joint velocity vector should be chosen so that the task error tends to zero. The simplest algorithm
is obtained by using the Jacobian pseudoinverse

 (19.107)

which plugged into (19.67) gives

 (19.108)
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ė + Ke = 0..

8596Ch19Frame  Page 476  Tuesday, November 6, 2001  9:56 PM

© 2002 by CRC Press LLC



If K is a positive definite (diagonal) matrix, the linear system (19.108) is asymptotically stable; the
tracking error along the given trajectory converges to zero with a rate depending on the eigenvalues
of K.

A block scheme of the inverse kinematics algorithm based on the Jacobian pseudoinverse is
illustrated in Figure 19.5.

If it is desired to exploit redundant degrees of freedom, solution (19.107) can be generalized to

 (19.109)

that logically corresponds to (19.79). In the case of numerical problems in the neighborhood of
singularities, the pseudoinverse can be replaced with a suitable damped least-squares inverse.

19.7.2 Jacobian Transpose

A computationally efficient inverse kinematics algorithm can be derived by considering the Jacobian
transpose in lieu of the pseudoinverse.

Consider the joint velocity vector

 (19.110)

where K is a symmetric positive definite matrix. A simple Lyapunov argument can be used to
analyze the convergence of the algorithm. Consider the positive definite function candidate

 (19.111)

its time derivative along the trajectories of the system (19.67) and (19.110) is

 (19.112)

If  it is easy to see that  is negative definite as long as Ja is full-rank, and then it can be
concluded that e = 0 is an asymptotically stable equilibrium point for the system (19.67) and
(19.110) as long as Ja is full-rank for all joint configurations q. A number of remarks are in order.

• If , only boundedness of tracking errors can be established; an estimate of the bound
is given by

 (19.113)

FIGURE 19.5 Block scheme of the inverse kinematics algorithm with the Jacobian pseudoinverse.
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where K has been conveniently chosen as a diagonal matrix K = kI. It is anticipated that k
can be increased to diminish the errors, but, in practice, upper bounds exist due to discrete-
time implementation of the algorithm.

• When a singularity is encountered,  is nonempty and  is only semi-definite; 
for  with , and the algorithm may get stuck. It can be shown, however, that
such an equilibrium point is unstable as long as  drives Ke outside . An enhancement
of the algorithm can be achieved by rendering the matrix  less sensitive to variations
of joint configurations along the task trajectory. This is accomplished by choosing a config-
uration-dependent K that compensates for variations of Ja.

A block scheme of the inverse kinematics algorithm based on the Jacobian transpose is illustrated
in Figure 19.6.

The most attractive feature of the Jacobian transpose algorithm is certainly the need of computing
only direct kinematics functions k(q) and Ja(q). Further insight into the performance of solution
(19.110) can be gained by considering the singular value decomposition of the Jacobian transpose,
and thus

 (19.114)

which reveals continuous, smooth behavior of the solution close and through singular configura-
tions. Note that in (19.114) the geometric Jacobian has been considered, and it has been assumed
that no representation singularities are introduced.

19.7.3 Use of Redundancy

In case of redundant degrees of freedom, it is possible to combine the Jacobian pseudoinverse
solution with the Jacobian transpose solution as illustrated below. This is carried out in the
framework of the so-called augmented task space approach to exploit redundancy in robotic
systems. The idea is to introduce an additional constraint task by specifying a (p × 1) vector xc as
a function of the robot joint variables, i.e.,

xc = kc(q),  (19.115)

with p ≤ n – m to constrain at most all the available redundant degrees of freedom. The constraint
task vector xc can be chosen by embedding scalar objective functions of the kind introduced in
(19.82)–(19.84).

Differentiating (19.115) with respect to time gives

 (19.116)

FIGURE 19.6 Block scheme of the inverse kinematics algorithm with Jacobian transpose.
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where Jc(q) = ∂∂∂∂ kc/∂∂∂∂ q is the constraint Jacobian. The result is an augmented differential kinematics
equation given by (19.67) and (19.116), based on a Jacobian matrix

 (19.117)

When a constraint task is specified independently of the end-effector task, there is no guarantee
that the matrix  remains full-rank along the entire task path. Even if rank (Ja) = m and rank
(Jc) = p, then rank  = m + p if and only if  Singularities of  are termed
artificial singularities, and it can be shown that those are given by singularities of the matrix

The above discussion suggests that, when solving for joint velocities, a task priority strategy is
advisable to avoid conflicting situations between the end-effector task and the constraint task.
Substituting (19.109) into (19.116) gives

 (19.118)

which could be solved for  provided that artificial singularities — those of the matrix
 — are avoided. Observing that equality (19.118) can be achieved only for the com-

ponents of  belonging to R(Jc), it is sufficient to consider the equation

 (19.119)

that can be solved for  giving

 (19.120)

By recalling that , solution (19.120) reduced to the simple form

 (19.121)

Folding (19.121) back into (19.109) and exploiting the idempotence of  gives

 (19.122)

where ec = xcd – xc, xcd being the desired value of the constraint task, and Kc is a positive definite
matrix. The operator  projects the secondary velocity contribution  on the null space
N(Ja), guaranteeing correct execution of the primary end-effector task while the secondary constraint
task is correctly executed as long as it does not interfere with the end-effector task. Obviously, if
desired, the order of priority can be switched, e.g., in an obstacle avoidance task when an obstacle
is along the end-effector path.

In the case when Jc becomes singular, a damped least-squares inverse of Jc in lieu of the
pseudoinverse in (19.121) can be used. Otherwise, by recalling the Jacobian transpose solution for
the end-effector task (19.110), the null space joint velocity vector can be conveniently chosen as

 (19.123)
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which allows the algorithm to work at a singularity of Jc and even at an artificial singularity. A
tracking error arises for the constraint task but, observing that the desired constraint task is often
constant over time , it can be concluded that the solution based on (19.123) performs
equally well.

19.7.4 Orientation Errors

The above inverse kinematics algorithms make use of the analytical Jacobian since they operate
on error variables (position and orientation) that are defined in the task space. More insight about
the implications of different end-effector orientation descriptions can be gained by separating
position from orientation components. With reference to the pseudoinverse algorithm based on
(19.107), using the geometric Jacobian in lieu of the analytical Jacobian, the solution can be
rewritten as

 (19.124)

where υυυυp, υυυυo represent two resolved velocities chosen to ensure tracking of the desired end-effector
motion. Substituting (19.124) into (19.56) gives

 (19.125)

 (19.126)

where the explicit end-effector linear and angular velocities have been separated.
For position, the choice is rather straightforward, i.e.,

 (19.127)

where the position error

ep = pd – pe(q)  (19.128)

between the desired and actual end-effector positions has been defined. Substituting (19.127) into
(19.125) gives

 (19.129)

and the choice of a positive definite matrix Kp guarantees asymptotic stability of the error system
which in turn implies tracking of pd.

On the other hand, for the orientation error, some considerations are in order depending on the
type of description adopted. If Euler angles are adopted, the resolved angular velocity in (19.124)
is chosen as

 (19.130)

where

 (19.131)

( ˙ )xcd = 0

˙ ( )†q J q=










υυ
υυ

p

o

ṗe p= υυ

ωωe o= υυ

υυp d p p= +ṗ K e

ė K ep p p+ = 0

υυo e d o o= +T K e ,( )( ˙ )ϕϕ ϕϕ Eul

e qo d e, ( )Eul = −ϕϕ ϕ
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is the orientation error. Substituting (19.130) into (19.126) gives

 (19.132)

provided that the matrix T(ϕϕϕϕe) is nonsingular. The system (19.132) is asymptotically stable for a
positive definite Ko, which in turn implies tracking of ϕϕϕϕd.

To overcome the drawback of representation singularities in (19.130), an algorithm based on an
alternative Euler angles description can be conceived that makes use of the rotation matrix describ-
ing the mutual orientation between the desired and the actual end-effector frame, i.e.,

 (19.133)

Differentiating (19.133) with respect to time and accounting for (19.53) gives

 (19.134)

where ωωωωde = ωωωωd – ωωωωe(q) is the end-effector angular velocity error.
Let ϕϕϕϕde denote the set of Euler angles that can be extracted from . Then, in view of (19.55)

and (19.53), the angular velocity  in (19.134) is related to the time derivative of ϕϕϕϕde as

 (19.135)

At this point, the resolved angular velocity in (19.124) can be chosen as

 (19.136)

where

 (19.137)

Substituting (19.136) into (19.126) gives

 (19.138)

provided that the matrix T(ϕϕϕϕde) is nonsingular.
The clear advantage of the alternative over the classical Euler angles algorithm based on (19.130)

is that by adopting a representation φde for which T(0) is nonsingular, representation singularities
occur only for large orientation errors, e.g., when βde = ±π/2 for the XYZ representation. In other
words, the ill-conditioning of matrix T is not influenced by the desired or actual end-effector
orientation but only by the orientation error; hence, as long as the error parameter |βde| < π/2, the
behavior of system (19.138) is not affected by representation singularities. In this respect, the choice
of a particular Euler angle description among the 12 possible should be carefully made, i.e., in the
sense of avoiding a representation singularity for the second angle of the type β = 0.

To overcome the problem of representation singularities, an inverse kinematics algorithm based
on the angle/axis description of orientation can be devised. From (19.133), the rotation , and
the unit vector rde can be extracted using the formulæ (19.12). Then, the orientation error can be
defined as

 (19.139)

˙
,e K e,o o oEul Eul+ = 0

e
d e dR R q R= ΤΤ( ) .

e
d de

e
d

˙ ( )R S Re= ωω

e
dR

e
deωω

e
de de deωω ϕϕ ϕϕ= T( ) ˙ .

υυo d e de o o= +ωω ϕϕR T K e( ) ,EulAlt

eo de, .EulAlt = ϕϕ

˙
, ,e K eo o oEulAlt EulAlt+ = 0

ϑde

e ro de de, sin .AnAx = ϑ
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Notice that (19.139) gives a unique solution for  but this interval is not limiting
for a convergent inverse kinematics algorithm. It can be shown that a computational expression of
the orientation error in (19.139) is given by

 (19.140)

where the triplet of unit vectors has been used for both the desired and the actual end-effector
rotation matrix. Note that the above limitation on ϑ sets the conditions .

Differentiation of (19.140) with respect to time gives

 (19.141)

where

 (19.142)

At this point, the resolved angular velocity in (19.124) can be chosen as

 (19.143)

Substituting (19.143) into (19.126) gives

 (19.144)

provided that the matrix L is nonsingular. In this respect, if the angle  is extended to the interval
(–π, π), then a singularity occurs at  for the matrix L which does not allow the
computation of υυυυo as in (19.143).

The final inverse kinematics algorithm is based on the unit quaternion description of orientation.
Let  and  represent the unit quaternions associated with Rd and Re,
respectively. The mutual orientation can be expressed in terms of the unit quaternion

 where

 (19.145)

It can be recognized that  if and only if Re and Rd are aligned, and thus it is sufficient
to consider εεεεde to express an end-effector orientation error, i.e.,

 (19.146)

Note that the explicit computation of ηe(q) and εεεεe(q) is not possible, but it requires intermediate
computation of the rotation matrix Re(q) that is available from the robot direct kinematics; then,
the unit quaternion can be extracted using the formulæ (19.17).

At this point, the resolved angular velocity in (19.124) can be chosen as

 (19.147)

− < <π ϑ π/ / ,2 2

e S n q n S s q s S a q ao e d e d e d, ( ( )) ( ( )) ( ( )) ,AnAx = + +( )1
2

n n s s a ae d e d e d
Τ Τ Τ≥ ≥ ≥0 0 0, ,

ė L L,o dAnAx = −Τωω ωω

L S n S n S s S s S a S a= − + +( )1
2

( ) ( ) ( ) ( ) ( ) ( ) .d e d e d e

υυ ωωo L L K e= +−1( ).,
Τ

d o o AnAx

˙
, ,e + K eo o oAnAx AnAx = 0

ϑde

ϑ πde = ± / 2

Qd d d= { }η ,εε Qe e e= { }η ,εε

Qde de de= { }η ,εε

η η ηde e d e d= +( ) ( )q qεε εεΤ

εε εε εε εε εεde e d d e d e= − −η η( ) ( ) ( ) ( ).q q S q

Qde = { }1,0

eo de, .
Quat

= εε

υυ ωωo d o o= + K e ,Quat
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Substituting (19.147) into (19.126) gives

 (19.148)

It should be observed that now the orientation error equation is not homogeneous in eo,Quat since it
contains the end-effector angular velocity error instead of the time derivative of the orientation
error. To study the stability of system (19.148), consider the positive definite Lyapunov function

 (19.149)

In view of the quaternion propagation (19.54), the time derivative of V along the trajectories of
system (19.148) is given by

 (19.150)

which is negative definite, implying that eo,Quat converges to zero.

19.8 Further Reading

Kinematic modelling of rigid robot manipulators can be found in any classical robotics textbook,
e.g., Craig,17 Dombre and Khalil,19 Paul,43 Sciavicco and Siciliano,51 Spong and Vidyasagar,54

Vukobratović. 56  Important reference sources on kinematics are also Angeles,1 Bottema and Roth,3

Hunt,25 McCarthy,38 Vukobratović and Kirćanski.57 Symbolic software packages have been devel-
oped to derive robot kinematic models, Khalil.26

The Denavit-Hartenberg notation dates back to the original work of Denavit and Hartenberg,18

which was recently modified in Craig17 and Khalil and Kleinfinger.28 One advantage of the so-
called modified Denavit-Hartenberg notation over the classical one is that it can also be used for
tree-structured and closed-chain robots.28 The homogeneous transformation representation for direct
kinematics of open-chain robots was first proposed in Pieper.45

Sufficient conditions for the inverse kinematics problem of closed-form solutions were given in
Pieper.45 These ensure the existence of solutions to six-degrees-of-freedom robots provided there
are three revolute joints with intersecting axes or three prismatic joints; in the former case, at most
eight admissible solutions exist, while the number reduces to two in the latter case. The kinematic
decoupling resulting for spherical-wrist robots was developed in Featherstone,22 Hollerbach,24

Khalil and Bennis,27 and Paul and Zhang.44 An algebraic approach to the inverse kinematics problem
for robots having closed-form solutions was presented in Paul,43 and consists of successively post-
(or pre-) multiplying both sides of the direct kinematics equation by partial transformation matrices
to isolate the joint variables one after another; the types of equations obtained with this approach
were formalized in Dombre and Khalil.19 Recent methods32,46 have found the inverse kinematics
solution to general six-revolute-joint robots in the form of a polynomial equation of degree 16, i.e.,
the maximum number of admissible solutions is 16. On the other hand, numerical solution tech-
niques based on iterative algorithms have been proposed, e.g., Goldenberg et al.23 and Tsai and
Morgan.55

The geometric Jacobian of the differential kinematics equation was originally proposed in
Whitney.59 The decomposition of the Jacobian into the product of three matrices is due to Renaud.47

The problem of efficient Jacobian computation was addressed in Orin and Schrader.42 The analytical
Jacobian concept was introduced in Khatib29 in connection with the operational space control
problem. A treatment of differential kinematics mapping properties can be found in Sciavicco and
Siciliano51; the reader is referred to Klema and Laub31 for SVD decomposition.

ωωde o o+ =K e , .Quat 0

V += − − −( ) ( ) ( ).η ηd e d e d e
2 εε εε εε εεΤ

V̇ = K e ,− e ,o o oQuat Quat
Τ
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The inversion of differential kinematics dates back to Whitney59 under the name of resolved
motion rate control. The adoption of the pseudoinverse of the Jacobian is due to Klein and Huang.30

More on the properties of the pseudoinverse can be found in Boullion and Odell.4 The use of null-
space joint velocities for redundancy resolution was proposed in Liégeois,33 and further refined in
Maciejewski and Klein36 and Yoshikawa60 concerning the choice of objective functions. The reader
is referred to Nakamura39 for a complete treatment of redundant robots.

The adoption of the damped least-squares inverse was independently presented in Nakamura and
Hanafusa40 and Wampler.58 More about kinematic control in the neighborhood of kinematic singu-
larities can be found in Chiaverini.9 The technique for estimating the smallest singular value of the
Jacobian is due to Maciejewski and Klein,37 and its modification to include the second smallest
singular value was achieved by Chiaverini.10 The use of the damped least-squares inverse for
redundant robots was presented in Egeland et al.21 The user-defined accuracy strategy was proposed
in Chiaverini et al.12 and further refined in Chiaverini et al.13 A review of the damped least-squares
inverse kinematics with experiments on an industrial robot was recently presented.16

Closed-loop inverse kinematics algorithms are discussed in Sciavicco and Siciliano.51 The orig-
inal Jacobian transpose inverse kinematics algorithm was proposed in Sciavicco and Siciliano;49

the choice of suitable gains for achieving robustness to singularities was discussed in Chiacchio
and Siciliano.7 Singular value decomposition of the Jacobian transpose is due to Chiaverini et al.14

Combining the Jacobian transpose solution with the pseudoinverse solution was proposed in Chiac-
chio and Siciliano.8 References on the augmented task space approach are Egeland,20 Samson et al.,48

Sciavicco and Siciliano,50 and Seraji.52 The occurrence of artificial singularities was pointed out in
Baillieul,2 and their properties were studied in Chiacchio et al.6 The task priority strategy was
originally proposed in Nakamura et al.41 and has recently been refined in Chiaverini11 concerning
robustness to artificial singularities. The use of the Jacobian transpose for the constraint task was
presented in Chiaverini et al.15 and Siciliano.53 The expression of the end-effector orientation error
based on an angle/axis description of orientation is due to Luh et al.35 and its properties were
studied in Lin.34 The use of a quaternion-based orientation error is due to Yuan.61 More about the
possible definitions of the orientation error can be found in Caccavale et al.5
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