Vibration Reduction
via the Boundary
Control Method

16.1 Introduction

16.2 Cantilevered Beam
System Model ¢ Model-Based Boundary Control

Law e Experimental Trials
16.3 Axially Moving Web

System Model ¢ Model-Based Boundary Control
Law e Experimental Trials

Siddharth P. Nagarkatti 16.4  Flexible Link Robot Arm

Lucent Technologies System Model ¢ Model-Based Boundary Control
Law e Experimental Trials

D M. D
arren awson 165 Summary

Clemson University

16.1 Introduction

The dynamics of flexible mechanical systems that require vibration reduction are usually mathemati-
cally represented by partial differential equations (PDEs). Specifically, flexible systems are modeled
by a PDE that is satisfied over all points within a domain and a set of boundary conditions. These
static or dynamic boundary conditions must be satisfied at the points bounding the domain. Tradition-
ally, PDE-based models for flexible systems have been discretized via modal analysis in order to
facilitate the control design process. One of the disadvantages of using a discretized model for control
design is that the controller could potentially excite the unmodeled, high-order vibration modes
neglected during the discretization process (i.e., spillover effects), and thereby, destabilize the closed-
loop system. In recent years, distributed control techniques using smart sensors and actuators (e.g.,
smart structures) have become popular; however, distributed sensing/actuation is often either too
expensive to implement or impractical. More recently, boundary controllers have been proposed for
use in vibration control applications. In contrast to using the discretized model for the control design,
boundary controllers are derived from a PDE-based model and thereby, avoid the harmful spillover
effects. In contrast to distributed sensing/actuation control techniques, boundary controllers are applied
at the boundaries of the flexible system, and as a result, require fewer sensors/actuators.

In this chapter, we introduce the reader to the concept of applying boundary controllers to
mechanical systems. Specifically, we first provide a motivating example to illustrate in a heuristic
manner how a boundary controller is derived via the use of a Lyapunov-like approach. To this end,
we now examine the following simple flexible mechanical system* described by the PDE

*This PDE model is the so-called wave equation which is often used to model flexible systems such as cables
or strings.
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FIGURE 16.1 Schematic diagram of the string system.

u,(x,0)—u_(x,6)=0 (16.1)
along with the boundary conditions
u(0,0)=0 u (L,t)= f(¢) (16.2)

where x €[0, L] denotes the independent position variable, 7 denotes the independent time variable,
u(x,t) denotes the displacement at position x for time z, the subscripts x, represent partial derivatives
with respect to x,z, respectively, and f(¢) is a control input applied at the boundary position x = L.
The flexible system described by Equations (16.1) and (16.2) can be schematically represented as
shown in Figure 16.1.

The control objective involves designing the control force f(f) to eliminate vibrations throughout
the entire system domain using only boundary measurements. Specifically, the aim is to drive
u(x,t) = 0Vx €[0,L] as r — o-. The underlying philosophy of this control problem is that f(r)
should behave as an active virtual damper that sucks the energy out of the system. It should be
noted that the degree of complexity of this damper-like force is often directly related to the system
model. For the linear PDE model of (16.1) and (16.2), only a simple damper in the form of a
negative boundary-velocity feedback term at x = L is sufficient to eliminate vibrations throughout
the entire system. However, as will be seen in later examples, a more sophisticated boundary control
law is often required for more complicated flexible, mechanical system models.

To illustrate the boundary control design procedure, let us consider the following boundary
control law for the system described by (16.1) and (16.2):

ft)=—ku,(L,1) (16.3)

where k is a positive, scalar control gain. Note that the above controller is only dependent on
measurement of the velocity u,(x,r) at the boundary position x = L. The structure of (16.3) is
based on the concept that negative velocity feedback increases the damping in the system. A
Lyapunov-like analysis method may be used to illustrate displacement regulation in the system. To
this end, the following differentiable, scalar function, composed of the kinetic and potential energy,
is defined as follows:

L

L L
V(i) = %J‘uf(c,t)dcs +l j u2(0,1)dG +2B J' o1 (6,1, (6.1)do (16.4)
0 0

0

where [3 is a small, positive weighting constant that is used to ensure that V(z) is non-negative. It
should be noted that while the weighting constant [ is used in the analysis, it does not appear in
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the control law of (16.3). After some algebraic manipulation and integration by parts,* the evaluation
of the time derivative of (16.4) along (16.1), (16.2), and (16.3) produces

V(1)< —Bj (] (0.1) +ul(0.1))do (16.5)

for a sufficiently small 3. Upon application of some standard integral inequalities' to (16.4) and
(16.5), it can be shown that u(x,) — 0Vx [0, L] as t — o; hence, the vibration along the entire
domain is driven to zero. We note that the third term of (16.4) is crucial in obtaining the structure
of the time derivative of the Lyapunov function given by (16.5); however, the physical interpretation
for this term in the Lyapunov function is difficult to explain.

With the above simple example serving to lay the groundwork, we will now focus our attention
on the discussion of more complex PDE models often used to describe specific engineering
applications. That is, we first present a model-based boundary controller that regulates the out-of-
plane vibration of a cantilevered flexible beam with a payload mass attached to the beam free-end.
This beam application is then followed by a discussion of a tension and speed setpoint regulating
boundary controller for an axially moving web system. Finally, we present a model-based boundary
controller that regulates the angular position of a flexible-link robot arm while simultaneously
regulating the link vibrations.

16.2 Cantilevered Beam

In many flexible mechanical systems such as flexible link robots, helicopter rotor/blades, space
structures, and turbine blades, the flexible element can be modeled as a beam-type structure. The
most commonly used beam model that provides a good mathematical representation of the dynamic
behavior of the beam is based on the Euler-Bernoulli theory, which is valid when the cross-sectional
dimensions of the beam are small in comparison to its length. When deformation owing to shear
forces is not inconsequential, a more accurate beam model is provided by the Timoshenko theory,
which also incorporates rotary inertial energy. However, owing to its lower order, the Euler-Bernoulli
model is often utilized for boundary control design purposes. This section focuses on the problem
of stabilizing the displacement of a cantilevered Euler-Bernoulli beam wherein the actuator dynam-
ics at the free-end of the beam have been incorporated into the model. The control law requires
shear, shear-rate, and velocity measurements at the free-end of the beam.

16.2.1 System Model

The cantilevered Euler-Bernoulli beam system shown in Figure 16.2 is described by the following
PDE:

pu,(x,t)+Elu__(x,t)=0 (16.6)

XXXX

with the following boundary conditions:**

* The detailed mathematical analysis involved in obtaining the final result can be found in Reference 1.
**Given the clamped-end boundary conditions of (16.7), we also know that u,(0,f) = u,(0,f) = 0.
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FIGURE 16.2 Schematic diagram of a cantilevered Euler-Bernoulli beam with a free-end payload mass.

u(0,1)=u (0,r)=u_(L,t)=0 (16.7)
and
mu, (L,t)— Elu_ (L,t)= f(t) (16.8)

where x,z represent the independent spatial and time variables, the subscripts x,z denote the partial
derivatives with respect to x,z, u(x, t) denotes the beam displacement at the position x for time
t, p is the mass/length of the beam, ET is the bending stiffness of the beam, L is the length of
the beam, m represents the payload/actuator mass attached to the free end-point of the beam, and
f(¢) denotes the boundary control input force.

16.2.2 Model-Based Boundary Control Law

The control objective is to design the boundary control force f(¢) that drives the beam displacement
u(x,1) to zero with time. Based on the system model, control objectives, and the stability analysis
(see Reference 1 or 2 for details), the control force is designed as follows:

f(t)y=omu_ (L,t)—Elu_ (L,t)—kn(r) (16.9)

where k_is a positive control gain and the auxiliary signal m(r) is defined as
() =u,(L,t)—owm  (L,1) (16.10)

with o being a positive control gain. A Lyapunov-like analysis,! similar to the one given in the
motivating example, can be used to show that the system energy (the sum total of the kinetic and
potential energy) goes to zero exponentially fast. Standard inequalities can then be invoked to show
that u(x,7)Vx €[0,L] is bounded by an exponentially decaying envelope; thus, it can easily be
established that the beam displacement u(x,?) exponentially decays to zero.

16.2.3 Experimental Trials

A schematic of the experimental setup used in the real-time implementation of the controller is
shown in Figure 16.3. A flexible beam 72 cm in length was attached to the top of a support structure
with a small metal cylinder weighing 0.3 kg attached to the free end via a strain-gauge shear sensor.
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FIGURE 16.3 Schematic diagram of the cantilevered Euler-Bernoulli beam experimental setup.

The beam end-point displacement, u(L,7), was sensed by a laser displacement sensor while another
laser displacement sensor was used to monitor the beam mid-point displacement (note that this
signal is not used in the control). A pair of electromagnets placed perpendicular to the beam free-
end applied the boundary control input force to the payload mass and a custom designed software
commutation strategy ensured that the desired input force commanded by the control law was
applied to the mass. All time derivatives were calculated using a backwards difference algorithm
and a second-order digital filter. The control algorithm was implemented at a 2 kHz sampling
frequency on a Pentium 166 MHz PC running QNX (a real-time, micro-kernel-based operating
system) under the Qmotor? graphical user environment.

For this experiment, we imparted an impulse excitation to an arbitrary point on the beam. To
ensure a consistent excitation, an impulse hammer was released from a latched position and allowed
to strike the beam only once and at the same point each time. The uncontrolled response of the
beam’s end-point and mid-point displacements when struck by the impulse hammer were recorded.

The response of the model-based boundary controller defined in (16.9) and implemented with
three sets of control gains: (i) k =2.5,a=1.1, (ii) k, =5,00=0.55, and (iii) k, =7.5,00=0.38 is
shown in Figure 16.4. It can easily be observed that the model-based controller damps out both
the low and high frequency oscillations. For a discussion and comparison of other experiments
performed on this system, the reader is referred to Reference 2.
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FIGURE 164 Cantilevered Euler-Bernoulli beam boundary control response to an impulse excitation.

16.3 Axially Moving Web

In high-speed manufacturing of continuous materials such as optical fibers, textile yarn, paper
products, and plastic film, it is imperative to deploy accurate speed and tension control. Typically,
rollers are driven to transport these materials through successive operations at varying speeds
inherently increasing the risk of controller performance degradation due to tension-varying distur-
bances. Moreover, tension nonuniformities often lead to product degradation or even failure; hence,
precise tension control is essential. Motivated by the need to increase throughput, many manufac-
turing processes such as those for textile yarn and fibers specify aggressive speed trajectories. Other
processes such as label printing demand an aggressive start/stop motion; hence, precise control of
such operations relies heavily on coordinated tension and speed control.

16.3.1 System Model

The axially moving web system, depicted in Figure 16.5, consists of a continuous material of length
L, axial stiffness EA , and linear density p moving between two controlled rollers. Control torques
are applied to each roller to regulate the speed of the moving web at a desired setpoint, maintain
a constant desired web tension, and damp axial vibration. Based on standard linear web modeling
assumptions,* the transformed field equation for the axial displacement of the web u(x,z) is given
by the following PDE:

pv,(x,t)— EAv_(x,1)=py(1) (16.11)

and the boundary conditions

W(Lt)=0 (16.12)
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FIGURE 16.5 Schematic diagram of an axially moving web system.
mv,(0,¢)— EAv (0,1)+ B, = my(t)— f, (1) (16.13)

where the subscripts denote partial differentiation, the dots over variables denote time differentia-
tion, m is the equivalent mass of the rollers, P, is the constant desired web tension, and the
following transformation* has been used:

y(©)=u(L,t) v(x,t)=y(t)—u(x,t)+ %(x -L). (16.14)

While the left roller (at x =0) dynamics are incorporated into (16.13), the right roller dynamics
(at x = L) are explicitly defined as follows:

my(t)— EAv (L,t)+ P, = f, (). (16.15)

The equivalent force control inputs f,(¢) and f,(r) in (16.13) and (16.15) are related to the control
torques T,(7) and T, (z) as follows:

fé(t)=T“7(t)—TBo f.(0)= TL(t)+TBL (16.16)

0 n

where T,,, 7,, denote the web tension in the respective adjacent span and r,, r, denote the radii
of the rollers.

16.3.2 Model-Based Boundary Control Law

The primary control objective is to design roller torques t,(z) and T, (¢) such that the web tension
P(x,1)Vx €[0,L] is regulated to a constant desired tension setpoint, denoted by P,, and the web
speed u,(x,r)Vx €[0, L] is regulated to a constant desired speed setpoint, denoted by v,. Based on
the system model, control objectives, and the stability analysis,> the speed setpoint control law is
defined as follows:

5= P(L,t)+kpn1(t)+k,.J‘n1(1)dr (16.17)
0

*The definition of the position/stretch error distribution, denoted by v(x,t), is motivated by the control objective
and the stability analysis.
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where P(L,t) denotes the web tension at x = L, the axial speed setpoint error 1 (7) is defined as
follows:

n()=v,=y(t)=v,—u(Lst), (16.18)

v, denotes the desired web speed setpoint, and k
tension setpoint control law is given by

k, denote constant, positive, scalar gains. The

P’

£(0)= Z—:R(O,t)— P0.1)+ k_m, () + kn, () + kl.J.nl(r)dr (16.19)

where the tension setpoint error 1, () is defined as

0, (1) =v,(0.) = kv (0.1) = u,(L.t) — u,(0,1) - %(FD — P(0,1)), (16.20)

P(0,1) denotes the tension at x =0, P(0,7) denotes the rate change in tension at x =0, and K.k,
denote positive scalar control gains. After using a Lyapunov-like analysis,” similar to one given in
the motivating example, it can be shown that v,(x,z) and v (x,7) exponentially decay to zero.
Thus, the time derivative of (16.14) yields velocity setpoint regulation (i.e., u,(x,7) is exponentially
driven to v,). Furthermore, given that the web tension is related to the axial strain as follows:
P(x,t)= EAu_(x,t), the spatial derivative of (16.14) yields tension setpoint regulation (i.e.,
EAu (x,1) is exponentially driven to P,). For more details, the reader is referred to Ulsoy.?

16.3.3 Experimental Trials

The experimental test stand consisted of an elastic rubber belt moving axially over two pulleys
actuated by brushed DC motors (see Figure 16.6). Four tension sensors and roller assemblies
laterally positioned the moving web and provided measurements of the forward boundary tensions
P(0,7) and P(L,) and the back boundary tensions 7}, and 7}, used by the controller. The encoders
mounted on the motors measured the angular displacements of the rotors. The control algorithm
was implemented with a sampling period of 0.5 msec on a Pentium 266 MHz PC running QNX
OS under the Omotor graphical user environment.3

The objective of the experiment was to regulate the material tension at 8.0 N and move the
material according to a smooth, exponentially stepped, desired axial speed setpoint trajectory. In
order to mimic real-world industrial processes (such as high-speed label printing), the desired speed
of the material was aggressively driven to 0 m/s and back to 0.75 m/s within a time duration of
0.5 sec and was repeated every 10 sec. Process-line disturbances leading to a sudden change in
material tension were also simulated by applying a constant reverse torque on the motor at x =0
for a duration of 0.5 sec at 10 sec intervals. Figure 16.7 shows the boundary controller perfor-
mance.

From the experimental results,’ it was observed that the maximum speed error at x =0 with the
boundary controller was three times smaller than industry standard controllers. With a start-stop
speed disturbance, the boundary controller improved tension setpoint regulation by a factor of three
over a PI speed controller without tension feedback and a factor of two over a PI speed controller
with tension feedback.
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FIGURE 16.6 Schematic diagram of the axially moving web experimental setup.

16.4 Flexible Link Robot Arm

Owing to the prohibitive cost of placing heavy equipment in outer space, most structural designers
prefer to utilize lightweight materials in the construction of space-based vehicles, satellites, etc.
Indeed, space-based robot manipulators are more likely to be comprised of long links manufactured
from lightweight metals or composites. Unfortunately, a major drawback in using lightweight links
is the significant presence of deflection and/or vibration problems during position control applica-
tions. In this section, we focus our attention on regulating the angular displacement of a flexible
link robot manipulator arm described by a nonlinear PDE model while simultaneously reducing
the distributed vibration of the link itself.

16.4.1 System Model

The robot system, illustrated in Figure 16.8, is composed of an Euler-Bernoulli beam clamped to
a rotating, rigid actuator hub with a payload/actuator mass attached to the free end of the beam. A
torque input applied to the hub controls the angular position while a force input that is applied to
the free-end mass regulates the beam displacement. The equations of motion of this single flexible-
link robot are given by®

pw, (x,t)+ Elw__ (x,t) = pu(x,1)g"(t) (16.21)

and

D(t)i(1)+ 4 D(0)g(t) + V. (£)g(¢) + mu(L,t)w,(L,1)g(t) — Elw_(0,) = 1(¢) (16.22)
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FIGURE 16.7 Axially moving web system control response.
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FIGURE 16.8 Schematic diagram of the flexible-link robot arm.

with the following boundary conditions:*

u(0,1)=u (0,r)=u_(L,t)=0 (16.23)

and

mw, (L,t)—mu(L,t)q"(t)— Elw__(L,t) = f(t) (16.24)

*Given the clamped boundary conditions of (16.23), we also know that u,(0,f) = u,,(0,¢) = 0.
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where the distributed displacement w(x,7) is defined as

w(x, 1) =u(x,1)+ xq(t) (16.25)

and u(x,r) denotes the link displacement at position x for time 7 with respect to the (X, Y)
coordinate system that rotates with the hub (see Figure 16.8), ¢(7),¢(z).q(r) represent the angular
position, velocity, and acceleration of the hub, respectively, with respect to the inertial reference
direction, p is the mass/length of the link, E7 is the bending stiffness of the link, L is the length
of the link, m represents a payload/actuator mass attached to the free end of the link, t(z) is the
control torque input applied to the hub, f(7) denotes the boundary control force input applied to
the mass, and the auxiliary functions D(r), D(z), and V, (z) are defined as follows:

L
D(t) = J+mu2(L,t)+pJu2(0,t)d02 J>0 (16.26)
0
D(t)= £ D(r) = 2mu( L.tYu,(L.1) + 2pju(c,¢)u, (6,1)do (16.27)
0
and
v (H)=p j u(G. 1w, (0,1)do (16.28)

with J denoting the hub’s inertia.

16.4.2 Model-Based Boundary Control Law

The control objective is to ensure that: (i) u(x,r) = 0Vxe[0,L] as r — o with respect to the
rotating coordinate system (X, Y) attached to the hub, and (ii) ¢(r) — g, as ¢ —  with respect
to the inertial reference direction, where ¢, is a desired, constant angular position. To aid the
analysis of the link displacement regulation objective, an auxiliary signal 1\(¢) , is defined as follows:

n@)=w,(L.t)—w_ (L) (16.29)

where w(x,7) was defined in (16.25). The angular position regulation objective is quantified via
the angular position setpoint error e(r) as follows:

e(t)=q(t)—q, . (16.30)

Based on the form of (16.29), the stability analysis, and the control objective, the boundary control
force is designed as follows:

f(t)y=mw__ (Lt)—EIw_ (L,t)—kn(t) (16.31)

where k_ is a positive control gain. Similarly, the hub control torque is designed as follows:

() = —k,é(t) =k e(t) + mu(L,0)g(t)w,. (L,) = BpLq(t)u’ (L, 1) (16.32)
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FIGURE 16.9 Schematic diagram of the flexible-link robot arm experimental setup.

where kv,k,,,B are positive control gains. A Lyapunov-like analysis,! similar to one given in the
motivating example, can be used to show that the system energy (the sum total of the kinetic and
potential energy) asymptotically goes to zero. Standard inequalities can then be invoked to show
that the beam displacement w(x,7)Vx [0, L] and the angular position setpoint error ¢(z) are both
asymptotically driven to zero. It is also interesting to note that the boundary control force of (16.31)
contains a noncollocated term in the feedback loop (i.e., ¢(¢) appears in the definition of n(r)
through w,(L,r)) while the control torque of (16.32) contains noncollocated feedforward and
feedback terms (i.e., the last two terms in (16.32)).

16.4.3 Experimental Trials

A schematic diagram of the experimental setup shown in Figure 16.9 consisted of a flexible
aluminum beam attached to the shaft of a switched reluctance motor (SRM) that was used to apply
the hub control torque. A lightweight plastic assembly supporting two air nozzles located at the
end-point of the beam was used to apply the boundary control force with a 90 psi compressed air
supply to high-speed proportional air valves. In addition, a modular line scan camera mounted on
the motor shaft and a high luminescence LED mounted at the beam’s end-point were used to
measure the beam’s end-point displacement, u(L,7). A second monitoring LED was placed at
u(L/2,t). The signal u__ (L,r) was measured via the shear force sensor attached to the beam free-
end, while an incremental encoder mounted on the motor shaft was utilized to measure the hub
angular position, ¢(r). All time derivatives were calculated using a backwards difference algorithm
and a second-order digital filter. The controller was implemented via the Qmotor real-time control
environment’ on a QNX platform using a sampling period of 0.5 msec.

The objective of the experiment was to regulate the hub angular position to a desired position
of 20° (i.e., g, =0.35rad) while driving the link displacement to zero. For comparison purposes,
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FIGURE 16.10 Flexible-link robot arm boundary control response.

a standard linear control algorithm along the hub angular setpoint error and with the air valves
deactivated was implemented. The model-based boundary controller was implemented with
k =3.5k, =20, kp =70, and B=0.35 (see Figure 16.10). From the experimental results,” it was
observed that while the standard linear control law did not damp out beam vibrations even after
10 sec, the model-based boundary controller was able to regulate the distributed beam vibrations
within approximately 3 sec as can be seen in Figure 16.10.

16.5 Summary

A number of researchers have investigated vibration control for flexible mechanical systems. For
example, Ulsoy® demonstrated how control and observation spillover can destabilize® the vibration
of an axially moving string under state feedback control based on a reduced-order, discretized
version of the infinite dimensional model. While Yang and Mote'? used a transfer function approach
to develop asymptotically stabilizing controllers to avoid spillover instabilities, Lee and Mote!!
developed Lyapunov-based, boundary control laws that asymptotically stabilized the vibration of
an axially moving string. Other researchers such as Morgul,'> Shahruz,'® Joshi and Rahn,'* and
Baicu et al.’ have designed boundary controllers for strings, overhead gantry crane systems, and
flexible cable systems. More recently, Zhang et al.! and Nagarkatti et al.”” designed boundary
controllers for nonlinear string models and axially accelerating web systems, respectively.

For cantilevered beams, boundary controllers have been proposed by Morgul,'®!® Chen et al.?
Canbolat et al.,> and Rahn and Mote,?' whereas boundary controllers for single flexible link robots
were developed by Luo et al.?>?5 and Morgul.?® Recently, Queiroz et al.” designed a boundary
control strategy for a nonlinear hybrid model of flexible link robots that asymptotically regulated
the link displacement and hub position.

In this chapter, we focused our attention on boundary controllers that regulated vibration for a
class of mechanical systems described by second-order (in time) PDE models. It should be noted
that the boundary control philosophy has also been applied to other kinds of systems. For example,
Byrnes,”” Krstic,?® and van Ly?® designed boundary controllers for the Burgers’ equation, which
serves as a model for a number of physical problems and is representative of many convection-
dominated flow systems. Boundary controllers (e.g., Reference 30) have also been designed for
the Kuramoto-Sivashinsky equation that is used to describe a variety of systems such as a plane
flame front, flow of thin liquid films on inclined planes, and Alfven drift wave plasmas.
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