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5.1 Introduction

 

Machine tool monitoring and control are essential for automated manufacturing. Monitoring is
necessary for detection of a process anomaly to prevent machine damage by stopping the process,
or to remove the anomaly by adjusting the process inputs (feeds and speeds). A process anomaly
may be gradual such as tool/wheel wear, may be abrupt such as tool breakage, or preventable such
as excessive vibration/chatter. Knowledge of tool wear is necessary for scheduling tool changes;
detection of tool breakage is important for saving the workpiece and/or the machine; and identifying
chatter is necessary for triggering corrective action. One difficulty in machine tool monitoring stems
from the limited sensing capability afforded by the harsh manufacturing environment. Sensors can
seldom be placed at the point of interest, and when located at remote locations they do not provide
the clarity of measurement necessary for reliable monitoring. This limited sensing capability is
often compensated for by using multiple sensors to enhance reliability. Another difficulty in machine
tool monitoring is the absence of accurate analytical models to account for changes in the measured
variables by variations in the cutting conditions. Such changes are often attributed to process
anomalies by the monitoring system, which result in false alarms.

Machine tool control is motivated by two objectives: (1) process regulation, so as to preempt
excessive forces, correct a process anomaly, or reduce contouring errors; and (2) process optimi-
zation, for the purpose of improving the quality of the part or reducing operation time based on
feedback from the process.

The aim of this chapter is to provide a conceptual survey of machine tool monitoring and control.
As such, no attempt has been made to acknowledge all the research in this area, and the citations
are included mainly to provide representative examples of various approaches.

 

5.2 Process Monitoring

 

Process monitoring is generally performed through the analysis of process measurements. For this
purpose, a process variable or a set of variables (e.g., force, power, acoustic emission, feed motor
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current) is measured and processed on-line to be compared against its expected value. Any deviation
from this expected value is attributed to a process anomaly. Expected values of measurements are
either determined according to an analytical model of the process

 

1

 

 or established empirically.

 

2

 

 The
advantage of using analytical models is that they account for changes in the machine inputs such
as feeds and speeds. The disadvantage of analytical models is that they are often not accurate and
need to be calibrated for the process. Establishing the expected values of measurements empirically
is simpler and more straightforward. However, the empirical values are only suitable for particular
operations and cannot be extrapolated to others.  To provide a representative sample of approaches
used in this area, tool wear estimation, tool breakage detection, and chatter identification are
discussed as the most investigated topics in machine tool monitoring.

 

5.2.1 Tool Wear Estimation

 

Flank wear directly influences the size and quality of the surface.

 

3

 

 Flank wear can affect fatigue
endurance limit by affecting surface finish, lubrication retention capability by changing the distri-
bution of heights and slopes of the surface,

 

4

 

 and other tribological aspects

 

5,6

 

 by affecting the
topography of the machined surface. Therefore, information about the state of flank wear is sought
to plan tool changes in order to avoid scrapping or manipulating the feed and cutting speed in-
process to control tool life.

 

7

 

Methods used for flank wear estimation can be classified as either direct or indirect.

 

8

 

 Direct
methods measure flank wear either in terms of material loss from the tool

 

9

 

 or by observing the
worn surface using optical methods.

 

10

 

 Direct methods are generally more reliable, although they
are not convenient for in-process use in a harsh manufacturing environment. Indirect methods, on
the other hand, estimate the flank wear by relating it to a measured variable such as the change in
size of the workpiece,

 

11

 

 cutting force,

 

12

 

 temperature,

 

13

 

 vibration,

 

14

 

 or acoustic emissions.

 

15

 

 The ideal
measured variable in the indirect method is one that is insensitive to process inputs. For example,
noncontact methods have been recently developed for surface roughness measurement,

 

16,17

 

 which
will undoubtedly have an impact on on-line estimation of tool wear.

Among the measurements used for indirect flank wear estimation, acoustic emission (AE) and
the cutting force have been the most popular due to their sensitivity to tool wear and reliability of
measurement. The cutting force generally increases with flank wear due to an increase in the contact
area of the wear land with the workpiece. Zorev

 

18

 

 and De Filippi and Ippolito

 

19

 

 were among the
first who demonstrated the direct effect of flank wear on the cutting force, which motivated
separation of the cutting force signal into two components, one associated with the unworn tool
and the other associated with tool wear. The unworn tool component is usually estimated at the
beginning of the cut with a new tool, and then subtracted from the measured force to estimate the
wear affected component. This method can provide relatively accurate estimates of flank wear so
long as the cutting variables (feed, speed, and depth of cut) remain unchanged. However, when the
cutting variables change, due to such factors as the geometric requirements of the part or manip-
ulation of the operating parameters, the identification of the wear affected component becomes
difficult. In such cases, either the effect of the manipulated cutting variable on the cutting force is
estimated by a model

 

1

 

 and separated to identify the wear affected component,

 

10,20

 

 or the wear
affected component is estimated from small cutting segments where the cutting variables remain
unchanged.

 

21

 

 In either case, recursive parameter estimation techniques, which require persistent
excitation of the cutting force to guarantee parameter convergence, are used for identification
purposes. The requirement for persistent excitation is relaxed,

 

12

 

 by measuring the cutting force
during the transient at the beginning of the cut when the tool engages the workpiece. During this
transient, the sharp tool chip formation component, which is proportional to the cross-sectional
area of the cut normal to the main cutting velocity, takes a wide range of values, from zero to the
steady-state value (product of the feed and depth of cut). The method uses the variations of the
cross-sectional area of the cut during this short time interval when flank wear is essentially constant

 

8596Ch05Frame  Page 76  Tuesday, November 6, 2001  10:19 PM

© 2002 by CRC Press LLC



   

to tune the model and estimate its parameters. It has been shown in laboratory experiments that
the residual force components in the axial and tangential directions increase linearly with the wear
land width, which can be used to estimate flank wear.

 

12

 

Similar to the cutting force signal, acoustic emission has been studied extensively for flank wear
estimation, where various statistical properties of the AE signal have been shown to correlate with
flank wear.

 

15

 

 To define more clearly the effect of flank wear, statistical pattern classification of AE
signal in frequency domain has been utilized as well.

 

22,23

 

Despite the considerable effort toward estimation of flank wear from a single variable, single
sensor measurements do not seem to be robust to varying cutting conditions. This has motivated
integration of multiple measurements through artificial neural networks.

 

24,25

 

 Artificial neural net-
works have the ability to represent patterns of fault signatures by complex decision regions without
reliance on the probabilistic structure of the patterns. Thus, they are powerful tools for fault
detection/diagnosis. Generally, a neural network is trained to identify the tool wear pattern by
supervised learning from samples of measurements taken at various levels of tool wear. Therefore,
the ability of neural networks to form reliable wear patterns depends not only on their topology,
but the extent of their training. In cases such as machining where adequate data are not available
to select the topology of the network or to provide the tool wear patterns for a wide range of cutting
conditions and material/tool combinations, these networks are not practical.

A remedy to supervised learning is the application of unsupervised neural networks

 

26

 

 that can
form pattern clusters of data without a known target for each input vector. These networks use
prototype vectors to characterize each category, and then classify input vectors within each category
according to their similarity to these prototype vectors. While there is a need to provide data from
each category to these networks in order to form the prototype vectors, the demand for training is
considerably less. Therefore, unsupervised networks have better potential for on-line utility in
machine tool monitoring. A comprehensive demonstration of unsupervised neural networks in tool
failure monitoring is provided by Li et al.,

 

27

 

 who applied an array of adaptive resonance theory (ART2)
networks

 

28

 

 to detect tool wear, tool breakage, and chatter using vibration and AE measurements.

 

5.2.2 Tool Breakage Detection

 

Fracture is the dominant mode of failure for more than one quarter of all advanced tooling material.
Therefore, on-line detection of tool breakages is crucial to the realization of fully automated
machining. Ideally, a tool breakage detection system must be able to detect failures rapidly to
prevent damage to the workpiece, and must be reliable to eliminate unnecessary downtime due to
false alarms.

Several measurements have been reported as good indicators of tool breakage.

 

29

 

 Among these,
the cutting force,

 

30

 

 acoustic emission,

 

31,32

 

 spindle motor current,

 

33

 

 feed motor current,

 

34

 

 and machine
tool vibration

 

35,36

 

 have been investigated extensively for their sensitivity to tool breakage. In general,
to utilize a measurement for tool breakage detection, two requirements need to be satisfied. First,
the measurement must reflect tool breakage under diverse cutting conditions (e.g., variable speeds,
feeds, coolant on/off, workpiece material). Second, the effect of tool breakage on the measurement
(tool breakage signature) must be uniquely distinguishable, so that other process irregularities such
as hard spots will not be confused with tool breakage. The tool breakage signature is commonly
in the form of an abrupt change, in excess of a threshold value. Despite considerable effort,

 

37,38

 

reliable signatures of tool breakage that are robust to diverse cutting conditions have not yet been
found from individual measurements.

To extract more information from individual measurements to improve the reliability of tool
breakage signatures, pattern classification techniques have been utilized. One of the earliest efforts
was by Sata et al.

 

39

 

 who related features of the cutting force spectrum such as its total power, the
power in the very low frequency range, and the power at the highest spectrum peak and its frequency
to chip formation, chatter, and a built-up edge. It was shown that the cutting force measurement
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alone provides sufficient information for unique identification of the above phenomena. Another
important work in this category is by Kannatey-Asibu and Emel

 

22

 

 who applied statistical pattern
classification to identify chip formation, tool breakage, and chip noise from acoustic emission
measurements. They reported a success rate of 90% for tool breakage detection. The only drawback
to spectrum-based tool breakage detection is the computational burden associated with obtaining
the spectrum, which often precludes its on-line application.

The alternative to single-sensor-based pattern classification is the multi-sensor approach using
artificial neural networks for establishing the breakage patterns.

 

24

 

 However, as already mentioned
for tool wear estimation, the utility of neural networks for tool breakage detection is limited by
their demand for expensive training. A pattern classifier that requires less training than artificial
neural networks is the multi-valued influence matrix (MVIM) method

 

40

 

 which has a fixed structure
and has been shown to provide robust detection of tool breakages in turning with limited
training.

 

41

 

Unsupervised neural networks have also been proposed for tool breakage detection in machin-
ing.

 

42

 

 The two predominant methods of unsupervised learning presently available for neural net-
works are Kohonen’s feature mapping and adaptive resonance theory (ART2).

 

28

 

 Kohonen’s method
of feature mapping establishes the decision regions for normal and abnormal categories through
prototype vectors that represent the centers of measurement clusters belonging to these categories.
Classification is based on the Euclidean distance between the measurements and each of the
prototype vectors. While Kohonen’s method forms the prototype vectors far enough from each
other to cope with variations in the tool breakage signature, it requires one or more sets of
measurements at tool breakage to establish the prototype vector for the abnormal category. The
other method of unsupervised learning, the adaptive resonance theory (ART2), classifies the mea-
surements as normal unless they are sufficiently different. When applied to tool breakage detection,
it does not require any samples of measurements to be taken at tool breakage. ART2, however,
may not cope effectively with varying levels of noise associated with different sensors, and may
classify multiples of a prototype within the same category, so it may produce misclassification. A
hybrid of the above pattern classifiers is the single category-based classifier (SCBC)

 

43

 

 that performs
detection by comparing each set of measurements against their corresponding prototype values for
their normal category and detects tool breakage when the measurements are sufficiently different
from their normal prototypes. Another variant of ART2 applied to tool breakage detection is a
network consisting of an array of ART2 networks, each classifying the pattern associated with an
individual sensor.

 

27

 

5.2.3 Chatter Detection

 

Chatter is the self-excited vibration of the machine tool that reflects the instability of the cutting
process. Chatter is often a serious limitation to achieving higher rates of removal, as it adversely
affects the surface finish, reduces dimensional accuracy, and may damage the tool and machine.
Therefore, machine tool chatter needs to be detected rapidly and corrected before it damages the
workpiece, tool, or the machine.

Several variables have been studied for detection of chatter. These include the cutting force
signal, displacement or acceleration of a point in the vicinity of the tool–workpiece interface, or
the sound emitted from the machine. Delio et al.

 

44

 

 claim that sensor placement and the frequency
response limitations of the transducer are the two major difficulties in detection of chatter. They
also claim that sound provides the most reliable and robust signature for chatter. While chatter has
been investigated extensively, most of the efforts have been directed toward prediction of chatter
rather than its detection. The approaches used for chatter detection mirror those employed for tool
breakage detection, except that analysis is performed primarily in frequency domain where the
effect of vibration is most pronounced.
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5.3 Process Control

 

The advent of open-architecture control provides a natural framework for implementation of control
systems in machine tools.

 

45

 

 Machine tool control is generally performed at two levels: (1) servo-control
to execute the command motion dictated by interpolators for following a prespecified contour, or (2)
supervisory control to continually adjust the process variables for the purpose of either regulating the
process against disturbances/detected anomalies, or optimizing performance.

 

46

 

 Process regulation is
often incorporated as the next step to process monitoring, whereby the controller attempts to correct,
if possible, the detected anomaly. Process optimization, on the other hand, is implemented to enhance
productivity based on an assessment of process and part quality constraints.

 

5.3.1 Control for Process Regulation

 

Control for process regulation has been attempted for one of the following reasons: maintaining
constant power or force, safeguarding against chatter, or correcting machine tool errors. The most
regulated process variable in machining has been the cutting force, mainly for its ease of measure-
ment on-line, and its reflection of process anomalies such as tool breakage and chatter. While there
have been differences in format and the underlying models used, most of the controllers designed
for force regulation have used a dynamic model of the cutting force with respect to the manipulated
variable (i.e., feed or speed) and have employed parameter estimation to adapt the model to changing
process conditions.

 

47-53

 

 Within this category, Furness et al.

 

54

 

 regulated the torque in drilling to avoid
possible chipping of the drill tips, stall of the spindle motor, thermal softening of the tool, or
torsional failure of the drill.

Among the first to design a controller for elimination of chatter were Nachtigal and Cook

 

55

 

 who
used the cutting force signal as feedback to control the position of the tool for increased stability.
They designed their controller on a fixed model of the machine tool–workpiece dynamics. As a
next step and to account for parameter uncertainty in that model, Mitchell and Harrison

 

56

 

 integrated
an observer in their control system to estimate the cutting tool motion on-line for feedback to the
control system. Active control of chatter is, by and large, an identification problem, because once
the presence of chatter is detected, the solution seems to be straightforward.

 

44,57

 

Another active area of research in process regulation is error correction. The accuracy of a
machined part is generally attributed to geometric and kinematic errors of the machine spindle,
thermal effects, and static and dynamic loading of the drives.

 

58

 

 Therefore, considerable effort has
been directed toward error compensation by modifying the tool position. Two fundamental
approaches have been used for reducing contouring errors:

 

46

 

 (1) by reducing the tracking error of
individual axes, and (2) by reducing contour error which is defined as the error between the actual
and desired tool path. As in force-regulation problems, a common approach used in many of these
systems is utilization of parameter estimation to update the servo-models in the presence of variable
loading and friction (e.g., see Tsao and Tomizuka

 

59

 

). The literature on tool error compensation is
quite extensive and is not surveyed here in the interest of space. Interested readers are referred to
Koren

 

46

 

 or Tung et al.

 

60

 

 for specific examples and an overview of the research in this area.

 

5.3.2 Control for Process Optimization

 

The adaptation of process variables for the purpose of enhancing process efficiency is addressed
within the area of control for process optimization.

 

1

 

 Process efficiency is generally defined in terms
of reduced* production cost or cycle time. Under deterministic conditions (no modeling uncertainty

 

*Control  

 

for process optimization has also been referred to as adaptive control optimization (ACO) in the
manufacturing engineering literature.

 

46
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and noise), there would be no need for a controller, as the optimal process inputs (feeds and speeds)
could be determined by nonlinear programming.

 

61

 

 In view of the highly complex nature of machin-
ing processes, however, the process inputs need to be changed iteratively in response to measure-
ments of process and part quality constraints. This interactive approach to process optimization is
adopted to enable the control system to maintain constraint satisfaction despite modeling uncertainty
arising from (1) the diversity of machining conditions due to variations in material properties,
tool/wheel type, and lubrication, (2) the stochastic nature of these processes caused by material
inhomogeneity, workpiece misalignment, and measurement noise, and (3) process time variability
due to tool wear.

The first attempt at control for process optimization was the Bendix system,

 

62

 

 which was designed
to continually maximize the machining removal rate through changes in both the feedrate and
spindle speed in response to feedback measurements of cutting torque, tool temperature, and
machine vibration. The Bendix System, however, was limited in applicability due to the need to
estimate tool wear based on an accurate model. A subsequent advancement in control for process
optimization was the Optimal Locus Approach,

 

63,64

 

 which made it possible to forego estimation of
tool wear. In this approach, the locus of the optimal points associated with various levels of tool
wear is computed, and the optimal point is sought where process and part quality constraints become
tight. The Optimal Locus Approach can avoid estimation of tool wear by using the tightness of
constraints as the measure for optimality, but it still needs to rely on the accuracy of the process model
for computing the optimal locus and determining

 

 a priori 

 

which constraints are tight at the optimum.
Because the success of this approach depends on the premise that modeling uncertainty will have
negligible effect on the accuracy of the optimal locus, it will produce suboptimal results when this
premise is violated. A similar approach in drilling, but with several more constraints, was demonstrated
by Furness et al.

 

65

 

 by locating the feasible region of the process according to the pair of constraints
active during each of the three drilling phases. In this application, the constraints were considered to
be stationary, due to the absence of tool wear in short-duration drilling cycles.

One approach to coping with modeling uncertainty in process optimization is to calibrate (e.g., by
parameter estimation) the closed-form solution of the optimal process inputs. This approach has been
implemented in cylindrical plunge grinding where each cycle is moved closer to its minimum time
based on a closed-form solution of the optimization problem according to a monotonicity analysis.

 

66

 

In this method, parameter estimation is used to cope with modelling uncertainty and process variability
by continually updating the estimated optimal conditions using parameters estimated from the preceding
grinding cycle. The basic requirement for this system is the availability of a relatively accurate model
of the process that can be updated using parameter estimation. Such accurate modeling is possible for
a few machining processes, but its extension to less-understood processes is difficult.

Another approach that uses an iterative strategy to process optimization but does not require
accurate process models is the method of Recursive Constraint Bounding (RCB).

 

67

 

 Like the Optimal
Locus Approach, RCB assesses optimality from the tightness in the constraints using measurements
of process and part quality after each workpiece has been finished (cycle). It also uses the model
of the process to find the optimal point. However, unlike the Optimal Locus Approach, RCB assumes
the model to be uncertain when determining which constraints are to be tight at the optimum and
selecting the machine settings for each process cycle. It obtains the machine settings by solving a
customized nonlinear programming (NLP) problem, and allows for uncertainty by incorporating
conservatism into the NLP problem. This conservatism is tailored according to the severity of
modeling uncertainty associated with each constraint. The repeated minimization of the objective
function with a progressively less conservative model has been shown to lead to bound constraints
and optimal machine settings.

 

68

 

Empirical modeling using neural networks has also been proposed for coping with modeling
uncertainty in process optimization.

 

69,70

 

 In one case, separate neural networks are used to represent
tool wear and the process, respectively, as a function of process variables (i.e., feed and speed),
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and the optimal point of the process is determined according to the neural network model and the
estimate of tool wear.

 

69

 

 In another approach, an iterative method to process optimization is adopted
by using a neural network trained as an inverse process model to provide increasingly more optimal
process variables.

 

70

 

 One of the inputs to this neural network is an estimate of a cost function
obtained from measurements of cutting force and vibration. Neural network modeling is appealing
from the point of view of coping with process uncertainty; however, it has limited utility in
manufacturing due to the expense associated with obtaining training data.

 

5.4 Conclusion

 

Machine tool monitoring and control provide the bridge between machining research and the
production line. Nevertheless, despite years of research and the multitude of success stories in the
laboratory, only a small amount of this technology has been transferred to production. It may be
argued that the slowness in technology transfer is due to the complexity of machining processes
and their incompatibility with the sensing technology. This is supported by the fact that most of
the monitoring systems developed are specific to isolated problems, and cannot be integrated with
other solutions to provide an effective monitoring system for all the process anomalies of concern.
Similarly, it may be argued that most control systems developed in the laboratory use impractical
or expensive transducers that are not suitable for the harsh production environment.

While complexity and sensing limitations are important impediments to technology transfer in
monitoring, they are minor compared to the cultural barrier imposed by the stringent manufacturing
environment. For implementation in production, monitoring and control systems need to be either
retrofitted to the existing machine tools or incorporated into new machine tools. The first option will
almost never happen because the savings from these systems rarely justify the loss from production
downtime. The second option, while more plausible, has not broadly occurred either, mainly due to
the cost competitiveness of the machine tool market. Three requirements need to be satisfied for
inclusion of monitoring and control in machine tools: (1) the underlying sensors need to be nonintrusive
and inexpensive, (2) the monitoring system needs to be comprehensive to detect every process anomaly
possible in operation, and (3) both monitoring and control need to be perfectly reliable and robust to
process variations. It is basically impossible to satisfy the above conditions, particularly the third one.

A compromise position is to incorporate monitoring and control for specific operations, based
on the sensing capability already available on the machine tool. The presence of open-architecture
control systems will be a significant boost to this solution, mainly due to the versatility these
systems offer in software development and trouble shooting.
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