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4.1 Introduction

 

The accuracy of a machined part depends on the precision motion delivered by a machine tool
under static, dynamic, and thermal loads. The accuracy is evaluated by measuring the discrepancy
between the desired part dimensions identified on a part drawing and the actual part achieved after
machining operations. The cutting tool deviates from a desired tool path due to errors in positioning
the feed drives, thermal expansion of machine tool and workpiece structures, static and dynamic
deformations of machine tool and workpiece, and misalignment of machine tool drives and spindle
during assembly. Because the parts to be machined will vary depending on the end-user, the builder
must design the machine tool structure and control of drives to deliver maximum accuracy during
machining.

A machine tool system has three main groups of parts: mechanical structures, drives, and controls.

 

4.1.1 Mechanical Structure

 

The structure consists of stationary and moving bodies. The stationary parts carry moving bodies,
such as table and spindle drives. They must be designed to carry large weights and absorb vibrations
transmitted by the moving and rotating parts. The stationary parts are generally made of cast iron,
concrete, and composites, which have high damping properties. The contact interface between the
stationary and moving bodies can be selected from steel alloys that allow surface hardness in order
to minimize wear.

 

4.1.2 Drives

 

In machine tools moving mechanisms are grouped into spindle and feed drives. The spindle drive
provides sufficient angular speed, torque, and power to a rotating spindle shaft, which is held in
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the spindle housing with roller or magnetic bearings. Spindle shafts with a medium-speed range
are connected to the electric motor via belts. There may be a single-step gear reducer and a clutch
between the electric motor and spindle shaft. High-speed spindles have electric motors built into
the spindle in order to reduce the inertia and friction produced by the motor–spindle shaft coupling.
The feed drives carry the table or the carriage. In general, the table is connected to the nut, and
the nut houses a lead screw. The screw is connected to the drive motor either directly or via a gear
system depending on the feed speed, inertia, and torque reduction requirements. High-speed
machine tools may employ linear direct motors and drives without the feed screw and nut, thus
avoiding excessive inertia and friction contact elements. The rotating parts such as feed screws and
spindles are usually made of steel alloys, which have high elasticity, a surface-hardening property,
and resistance against fatigue and cracks under dynamic, cyclic loads.

 

4.1.3 Controls

 

The control parts include servomotors, amplifiers, switches, and computers. The operator controls
the motion of the machine from an operator panel of the CNC system.

Readers are referred to machine design handbooks and texts for the basics of designing stationary,
linearly moving, and rotating shafts.

 

1

 

 The principles of machine tool control can be found in
dedicated texts.

 

2,3

 

 The fundamentals of machine tool vibrations, which are unique to metal cutting,
are covered in this handbook.

 

4.2 Chatter Vibrations in Cutting

 

Machine tool chatter vibrations occur due to a self-excitation mechanism in the generation of chip
thickness during machining operations. One of the structural modes of the machine tool–workpiece
system is excited initially by cutting forces. A wavy surface finish left during the previous revolution
in turning, or by a previous tooth in milling, is removed during the succeeding revolution or tooth
period and also leaves a wavy surface due to structural vibrations.

 

4

 

 Depending on the phase shift
between the two successive waves, the maximum chip thickness may exponentially grow while
oscillating at a chatter frequency which is close to, but not equal to, a dominant structural mode
in the system. The growing vibrations increase the cutting forces and may chip the tool and produce
a poor, wavy surface finish. The self-excited chatter vibrations may be caused by mode coupling
or regeneration of the chip thickness.

 

5

 

 Mode-coupling chatter occurs when there are vibrations in
two directions in the plane of cut. Regenerative chatter occurs due to phase differences between
the vibration waves left on both sides of the chip, and occurs earlier than mode-coupling chatter
in most machining cases. Hence, the fundamentals of regenerative chatter vibrations are explained
in the following section using a simple, orthogonal cutting process as an example.

 

4.2.1 Stability of Regenerative Chatter Vibrations in Orthogonal Cutting

 

Consider a flat-faced orthogonal grooving tool fed perpendicular to the axis of cylindrical shaft
held between the chuck and the tail stock center of a lathe (see Figure 4.1). The shaft is flexible
in the direction of feed, and it vibrates due to feed cutting force (

 

F

 

f

 

). The initial surface of the shaft
is smooth without waves during the first revolution, but the tool starts leaving wavy surface behind
due to vibrations of the shaft in the feed direction 

 

y

 

 which is in the direction of radial cutting force
(

 

F

 

f

 

). When the second revolution starts, the surface has waves both inside the cut where the tool
is cutting (i.e., inner modulation, 

 

y

 

(

 

t

 

)) and outside surface of the cut due to vibrations during the
previous revolution of cut (i.e., outer modulation, 

 

y

 

(

 

t

 

 –

 

T

 

)). The resulting dynamic chip thickness

 

h

 

(

 

t

 

) is no longer constant, but varying as a function of vibration frequency and the speed of the
workpiece,
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 (4.1)

where 

 

h

 

0

 

 is the intended chip thickness which is equal to the feed rate of the machine. Assuming
that the workpiece is approximated as a single degree-of-freedom system in the radial direction,
the equation of motion of the system can be expressed as

 (4.2)

where the feed cutting force 

 

F

 

f

 

 

 

(

 

t

 

) is proportional to the cutting constant in the feed direction (

 

K

 

f

 

),
width of cut 

 

a,

 

 and the dynamic chip load 

 

h

 

(

 

t

 

). Because the forcing function on the right-hand side
depends on the present and past solutions of vibrations (

 

y

 

(

 

t

 

), 

 

y

 

(

 

t

 

 –

 

T

 

)) on the left side of the equation,
the chatter vibration expression is a delay differential equation. The jumping of the tool due to
excessive vibrations, and the influence of vibration marks left on the surface during the previous
revolutions may further complicate the computation of exact chip thickness. The cutting constant

 

K

 

f

 

 may change depending on the magnitude of instantaneous chip thickness and the orientation of
the vibrating tool or workpiece, which is additional difficulty in the dynamic cutting process. When
the flank face of the tool rubs against the wavy surface left behind, additional process damping is
added to the dynamic cutting process which attenuates the chatter vibrations. The whole process
is too complex and nonlinear to model correctly with analytical means, hence time-domain numer-
ical methods are widely used to simulate the chatter vibrations in machining. However, a clear
understanding of chatter stability is still important and best explained using a linear stability theory.
The stability of chatter vibrations is analyzed using linear theory by Tobias,

 

6

 

 Tlusty,

 

4

 

 and Merritt.

 

7

 

The chatter vibration system can be represented by the block diagram shown in Figure 4.1, where
the parameters of the dynamic cutting process are shown in a Laplace domain. Input to the system
is the desired chip thickness 

 

h

 

0,

 

 and the output of the feedback system is the current vibration 

 

y

 

(

 

t

 

)
left on the inner surface. In the Laplace domain, 

 

y

 

(

 

s

 

) = 

 

L

 

y

 

(

 

t

 

), and the vibration imprinted on the

 

FIGURE 4.1

 

Mechanism of chatter vibrations in a plunge turning process.
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outer surface during the previous revolution is

 

L

 

where 

 

T

 

 is the spindle period.
The dynamic chip thickness in the Laplace domain is

 

h

 

(

 

s

 

) = 

 

h

 

0

 

 – 

 

y

 

(

 

s

 

) + 

 

e

 

–sT

 

y

 

(

 

s

 

) = 

 

h

 

0

 

 + (

 

e

 

–sT

 

 – 1)

 

y

 

(

 

s

 

)  (4.3)

which produces dynamic cutting force,

 

F

 

f

 

 

 

(

 

s

 

) = 

 

K

 

f

 

 ah

 

(

 

s

 

)  (4.4)

The cutting force excites the structure and produces the current vibrations 

 

y

 

(

 

s

 

),

 

y

 

(

 

s

 

) = 

 

F

 

f
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Φ
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f

 

 ah

 

(
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) 

 

Φ

 

(
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)  (4.5)

where 

 

Φ

 

(

 

s

 

) is the transfer function of the single degree of workpiece structure,

Substituting 

 

y

 

(

 

s

 

) into 

 

h

 

(

 

s

 

) yields,

 

h

 

(

 

s

 

) = 

 

h

 

0

 

 + (e

 

–

 

sT

 

 –

 

 1)

 

K

 

f

 

 ah

 

(

 

s

 

)

 

Φ

 

(

 

s

 

)

and the resulting transfer function between the dynamic and reference chip loads becomes,

 (4.6)

The stability of the above close-loop transfer function is determined by the roots (

 

s

 

) of its charac-
teristic equation, i.e., 

1 + (1 – 

 

e

 

–sT)

 

 

 

K

 

f

 

 a

 

Φ

 

(

 

s

 

) = 0

Let the root of the characteristic equation is 

 

s 

 

= 

 

σ

 

 + 

 

j

 

ω

 

c

 

. If the real part of the root is positive
(σ > 0), the time domain solution will have an exponential term with positive power (i.e., e + |σ|t).
The chatter vibrations will grow indefinitely, and the system will be unstable. A negative real root
(σ < 0) will suppress the vibrations with time (i.e., e–|σ|t), and the system is stable with chatter
vibration-free cutting. When the real part is zero (s = jωc), the system is critically stable, and the
workpiece oscillates with constant vibration amplitude at chatter frequency ωc. For critical border-
line stability analysis (s = jωc), the characteristic function becomes,

 (4.7)

where alim is the maximum axial depth of cut for chatter vibration free machining. The transfer
function can be partitioned into real and imaginary parts, i.e., Φ(jωc) = G + jH. Rearranging the
characteristic equation with real and complex parts yields,

Both real and imaginary parts of the characteristic equation must be zero. If the imaginary part
is considered first,
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and

 (4.8)

where ψ is the phase shift of the structure’s transfer function. Using the trigonometric identity cos
ωcT = cos2(ωcT/2) – sin2(ωcT/2) and sin ωcT = 2sin (ωcT/2) cos (ωcT/2),

and

 (4.9)

The spindle speed (n[rev/s]) and the chatter vibration frequency (ωc) have a relationship which
affects the dynamic chip thickness. Let’s assume that the chatter vibration frequency is ωc[rad/s]
or fc[Hz]. The number of vibration waves left on the surface of the workpiece is

 (4.10)

where k is the integer number of waves and ∈/2π is the fractional wave generated. The angle
represents the phase difference between the inner and outer modulations. Note that if the spindle
and vibration frequencies have an integer ratio, the phase difference between the inner and outer
waves on the chip surface will be zero or 2π, hence the chip thickness will be constant albeit the
presence of vibrations. In this case, the inner (y(t)) and outer (y(t – T)) waves are parallel to each
other and there will be no chatter vibration. If the phase angle is not zero, the chip thickness changes
continuously. Considering k integer number of full vibration cycles and the phase shift,

2π fc T = 2kπ + ∈ (4.11)

where the phase shift between the inner and outer waves is ∈ = 3π + 2ψ. The corresponding spindle
period (T[sec]) and speed (n[rev/min]) is found,

 (4.12)

The critical axial depth of the cut can be found by equating the real part of the characteristic
equation to zero,

or
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Substituting H/G = (sin ωc T)/(cos ωc T – 1) and rearranging the above equation yields,

 (4.13)

Note that since the depth of cut is a physical quantity, the solution is valid only for the negative
values of the real part of the transfer function (G(ωc)). The chatter vibrations may occur at any
frequency where G(ωc) is negative. If alim is selected using the minimum value of G(ωc), the
avoidance of chatter is guaranteed at any spindle speed. The expression indicates that the axial
depth of cut is inversely proportional to the flexibility of the structure and cutting constant of the
workpiece material. The harder the work material is, the larger the cutting constant Kf will be, thus
reducing the chatter vibration-free axial depth of cut. Similarly, flexible machine tool or workpiece
structures will also reduce the axial depth of cut or the productivity.

The above stability expression was first obtained by Tlusty.4 Tobias6 and Merrit7 presented similar
solutions. Tobias presented stability charts indicating chatter vibration-free spindle speeds and axial
depth of cuts. Assuming that the transfer function of the structure at the cutting point (Φ) and
cutting constant Kf are known or measured, the procedure of plotting the stability lobes can be
summarized in the following:

• Select a chatter frequency (ωc) at the negative real part of the transfer function.

• Calculate the phase angle of the structure at ωc , Equation (4.8).

• Calculate the critical depth of cut from Equation (4.13).

• Calculate the spindle speed from Equation (4.12) for each stability lobe k = 0, 1, 2, ….

• Repeat the procedure by scanning the chatter frequencies around the natural frequency of
the structure.

If the structure has multiple degrees of freedom, an oriented transfer function of the system in
the direction of chip thickness must be considered for Φ. In that case, the negative real part of the
complete transfer function around all dominant modes must be scanned using the same procedure
outlined for the orthogonal cutting process.

4.3 Analytical Prediction of Chatter Vibrations in Milling

The rotating cutting force and chip thickness directions, and intermittent cutting periods complicate
the application of orthogonal chatter theory to milling operations. The following analytical chatter
prediction model was presented by Altintas and Budak,8,9 and provides practical guidance to
machine tool users and designers for optimal process planning of depth of cuts and spindle speeds
in milling operations.

4.3.1 Dynamic Milling Model

Milling cutters can be considered to have 2-orthogonal degrees of freedom as shown in Figure 4.2.
The cutter is assumed to have N number of teeth with a zero helix angle. The cutting forces excite
the structure in the feed (X) and normal (Y) directions, causing dynamic displacements x and y,
respectively. The dynamic displacements are carried to rotating tooth number (j) in the radial or
chip thickness direction with the coordinate transformation of vj = –x sin – y cos where is
the instantaneous angular immersion of tooth (j) measured clockwise from the normal (Y) axis. If
the spindle rotates at an angular speed of Ω (rad/s) the immersion angle varies with time as j (t) =
Ωt. The resulting chip thickness consists of static part (st sin ), which is due to rigid body motion
of the cutter, and the dynamic component caused by the vibrations of the tool at the present and

a
K Gf c

lim = −1
2 ( )ω

φj φj φj

φ
φj
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previous tooth periods. Because the chip thickness is measured in the radial direction (vj), the total
chip load can be expressed by,

h( ) = [st sin + (vj,0 – vj)]g( )  (4.14)

where st is the feed rate per tooth and (vj,0, vj) are the dynamic displacements of the cutter at the
previous and present tooth periods, respectively. g( ) is zero when the tool is out of cut, and unity
otherwise

 (4.15)

where are start and exit immersion angles of the cutter to and from the cut, respectively.
Henceforth, the static component of the chip thickness (st sin ) is dropped from the expressions
because it does not contribute to the dynamic chip load regeneration mechanism. Substituting vj

into (4.14) yields,

 (4.16)

where ∆x = x – x0, ∆y = y – y0. (x, y) and (x0, y0) represent the dynamic displacements of the cutter
structure at the present and previous tooth periods, respectively. The tangential (Ftj) and radial (Frj)
cutting forces acting on the tooth j is proportional to the axial depth of cut (a) and chip thickness (h),

 (4.17)

where cutting coefficients Kt and Kr are constant. Resolving the cutting forces in the x and y
directions,

FIGURE 4.2 Mechanism of chatter in milling.
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 (4.18)

and summing the cutting forces contributed by all teeth, the total dynamic milling forces acting on
the cutter are found as

 (4.19)

where and cutter pitch angle is Substituting the chip thickness (4.16) and
tooth forces (4.7) into (4.18), and rearranging the resulting expressions in matrix form yields,

 (4.20)

where time-varying directional dynamic milling force coefficients are given by

Considering that the angular position of the parameters changes with time and angular velocity,
Equation (4.20) can be expressed in time domain in a matrix form as10,11

 (4.21)

As the cutter rotates, the directional factors vary with time, which is the fundamental difference
between milling and operations like turning, where the direction of the force is constant. However,
like the milling forces, [A(t)] is periodic at tooth passing frequency ω = NΩ or tooth period T =
2π/ω, thus can be expanded into Fourier series.

 (4.22)
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The number of harmonics (r) of the tooth-passing frequency (ω) to be considered for an accurate
reconstruction of [A(t)] depends on the immersion conditions and the number of teeth in the cut.
If the most simplistic approximation, the average component of the Fourier series expansion, is
considered, i.e., r = 0,

 (4.23)

Because [A0] is valid only between the entry and exit angles of the cutter
(i.e., and  it becomes equal to the average value of [A(t)] at cutter
pitch angle

(4.24)

where the integrated functions are given as

The average directional factors are dependent on the radial cutting constant (Kr) and the width of
cut bound by entry and exit angles. The dynamic milling expression (4.21) is reduced
to the following

 (4.25)

where [A0] is a time-invariant but immersion-dependent directional cutting coefficient matrix.
Because the average cutting force-per-tooth period is independent of the helix angle, [A0] is valid
for helical end mills as well.

4.3.2 Chatter Stability Lobes

Transfer function matrix ([Φ (iω)]) identified at the cutter–workpiece contact zone,

 (4.26)

where Φxx(iω) and Φyy(iω) are the direct transfer functions in the x and y directions, and Φxy(iω)
and Φyx(iω) are the cross-transfer functions. The vibration vectors at the present time (t) and previous
tooth period (t – T) are defined as,
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Describing the vibrations at the chatter frequency ωc in the frequency domain using harmonic
functions,

 (4.27)

and substituting gives,

where ωcT is the phase delay between the vibrations at successive tooth periods T. Substituting
{Φ(iωc)} into the dynamic milling Equation (4.25) gives

which has a nontrivial solution if its determinant is zero,

which is the characteristic equation of the closed-loop dynamic milling system. The notation is
further simplified by defining the oriented transfer function matrix as

 (4.28)

and the eigenvalue of the characteristic equation as

 (4.29)

The resulting characteristic equation becomes,

 (4.30)

The eigenvalue of the above equation can easily be solved for a given chatter frequency ωc, static
cutting coefficients (Kt, Kr) which can be stored as a material-dependent quantity for any milling
cutter geometry, radial immersion , and transfer function of the structure (4.28). If two
orthogonal degrees-of-freedom in feed (X) and normal (Y) directions are considered (i.e., Φxy =
Φyx = 0.0), the characteristic equation becomes just a quadratic function

 (4.31)
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where

Then, the eigenvalue Ω is obtained as

 (4.32)

As long as the plane of cut (x, y) is considered, the characteristic equation is still a simple quadratic
function regardless of the number of modes considered in the machine tool structure. Indeed, the
actual transfer function measurements of the machine dynamics can be used at each frequency.
Because the transfer functions are complex, the eigenvalue has a real and an imaginary part, Λ =
ΛR + iΛI. Substituting the eigenvalue and in Equation (4.29) gives the
critical axial depth of cut at chatter frequency ωc,

 (4.33)

Because alim is a real number, the imaginary part of the Equation (4.33) must vanish,

 (4.34)

By substituting,

 (4.35)

into the real part of the Equation (4.33) (imaginary part vanishes), the final expression for chatter-
free axial depth of cut is found as

 (4.36)

Therefore, given the chatter frequency (ωc), the chatter limit in terms of the axial depth of cut can
directly be determined from Equation (4.36).

The corresponding spindle speeds are also found in a manner similar to the chatter in orthogonal
cutting presented in the previous section.

From Equation 4.35,

 (4.37)
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and the phase shift of the eigenvalue is ψ = tan–1κ, and ∈ = π – 2ψ is the phase shift between inner
and outer modulations (present and previous vibration marks). Thus, if k is the integer number of
full vibration waves (i.e., lobes) imprinted on the cut arc,

 (4.38)

Again, care must be taken in calculating the phase shift (ψ) from the real (ΛR) and imaginary (ΛI)
parts of the eigenvalue. The spindle speed n(rev/min) is simply calculated by finding the tooth-
passing period T(s),

 (4.39)

In summary, the transfer functions of the machine tool system are identified, and the dynamic
cutting coefficients are evaluated from the derived Equation (4.24) for a specified cutter, workpiece
material, and radial immersion of the cut. Then the stability lobes are calculated as follows:8

• Select a chatter frequency from transfer functions around a dominant mode.

• Solve the eigenvalue Equation (4.31).

• Calculate the critical depth of cut from Equation (4.36).

• Calculate the spindle speed from Equation (4.39) for each stability lobe k = 0, 1, 2, ….

• Repeat the procedure by scanning the chatter frequencies around all dominant modes of the
structure evident on the transfer functions.

A sample stability lobe for a vertical machining center milling Aluminum 7075 alloy with a
four-fluted helical end mill is shown in Figure 4.3. The measured transfer function parameters of
the machine at the tool tip are given as follows: ωnx = {452.8, 1448}H z; ζx = {0.12, 0.017}, kx =
{124.7E + 6, (–) 6595.6E + 6}N/m; ωny = {516, 1407}H z; ζx = {0.024, 0.0324}, ky = {(–) 2.7916E
+ 10, 3.3659E + 9}N/m in the feed (x) and normal (y) directions, respectively. The stability lobes
are predicted analytically with the theory given here, as well as using a time domain numerical
solution which takes a considerable amount of computation time. The analytical method agrees
well with the numerical solutions. The machine tool exhibits severe chatter vibrations when the

FIGURE 4.3 Stability lobes for a half immersion down milling of Al7075-T6 material with a bullnose cutter
having two edges, 31.75 shank diameter and 4.7625-mm corner radius. The feed per tooth was st = 0.050 mm/rev
in cutting tests.
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spindle speed is set to 9500 rev/min. The cutting force amplitudes are large, and the chatter occurs
at 1448 Hz, which is the second bending mode of the spindle. When the speed and, therefore,
productivity are increased to 14,000 rev/min, the chatter disappears and the force is dominated by
the regular tooth-passing frequency of 467 Hz. The finish surface becomes acceptable, and the
cutting force magnitude drops at the chatter vibration-free spindle speed and depth of cut.
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